## **Final Data Report**

Bingham Mine Cold-Air Pool Structure and Evolution

C. David Whiteman, Ph.D. Research Professor

Sebastian W. Hoch, Ph.D Research Assistant Professor

Project Officer: Cassady Kristensen Kennecott Utah Copper 4700 Daybreak Parkway South Jordan, UT 84095

30 November 2014

Department of Atmospheric Sciences University of Utah 135 S 1460 E, Rm 819 Salt Lake City, UT 84112-0110 This report provides information on the meteorological data collected as part of the University of Utah's Bingham Mine Cold-Air Pool Structure and Evolution experiment (Bingham Mine Experiment) for the winters of 2010-2011 through 2013-2014. Data from this experiment are provided as an attachment to this report in the form of a 64 GB USB flash drive containing 37 GB of data. Table 1 summarizes the data collected and analysis goals for each of the winters. The locations and resources used for the UU measurements varied from winter to winter depending on analysis goals. Data from the KUC automatic weather stations (AWSes) supplemented the UU data. These stations remained in place after they were installed and Table 2 provides information on their locations. Information is missing, however, regarding the Castro and Copper AWSes. The remaining sections of this report provide metadata for each of the winters, in order.

| Winters    | Instrumentation                     | Analysis Goals                     |
|------------|-------------------------------------|------------------------------------|
| 2010-2011  | Temperature and relative humidity   | Salt Lake City Basin (SLC)-        |
| late start | (RH) inside and outside; LiDAR      | Bingham Canyon Mine (BCM)          |
|            | winds late in season; Bingham Pass  | differences in inversion           |
|            | AWS, KUC AWSes                      | characteristics; stability; mixing |
| 2011-2012  | Temperature/RH inside and outside;  | SLC-BCM differences in inversion   |
|            | LiDAR winds; Bingham Pass AWS,      | characteristics; stability; mixing |
|            | KUC AWSes                           | gap flows; waves                   |
| 2012-2013  | Temperature /RH outside; ceilometer | aerosol backscatter - temperature  |
|            | outside, KUC AWSes                  | structure connection               |
| 2013-2014  | Temperature /RH inside and outside; | aerosol backscatter - temperature  |
|            | ceilometers inside & outside, KUC   | structure connection; SLC-BCM      |
|            | AWSes                               | aerosol depth differences          |

Table 1. Summary of meteorological data available for the Bingham Mine Experiment, including the instrumentation and analysis goals.

| Site               | KUC | Years              | N latitude                     | W longitude                      | Elev<br>(ft) | Elev<br>(m) |
|--------------------|-----|--------------------|--------------------------------|----------------------------------|--------------|-------------|
| Large<br>Reservoir | KUC | all                | 40° 33' 47.38" or<br>40.56316° | 112° 05' 14.37" or<br>112.08733° | 5367         | 1636        |
| Dry Fork           | KUC | all                | 40° 33' 43.15" or<br>40.56199° | 112° 08' 57.80" or<br>112.14939° | 6844         | 2086        |
| Code 51            | KUC | all                | 40° 32' 59.24 or<br>40.54979°  | 112° 07' 43.91" or<br>112.12886° | 6612         | 2015        |
| Bingham<br>Pass    | UU  | 2010-11<br>2011-12 | 40° 32' 40.78" or<br>40.54466° | 112° 08' 25.73" or<br>112.14048° | 6473         | 1973        |
| East<br>Butte      | KUC | all                | 40° 32' 11.35" or<br>40.53649° | 112° 08' 10.78" or<br>112.13633° | 7368         | 2246        |
| Keystone           | KUC | all                | 40° 03' 40.93" or<br>40.52804° | 112° 07' 00.67" or<br>112.11685° | 6941         | 2116        |
| SAPP               | KUC | all                | 40° 30' 53.04" or<br>40.51473° | 112° 10' 29.94" or<br>112.17498° | 7421         | 2262        |
| Galena             | KUC | all                | 40° 30' 23.98" or<br>40.50666° | 112° 09' 32.54" or<br>112.15904° | 7584         | 2312        |
| Castro             | KUC | all                | unknown                        | unknown                          | unk          | unk         |
| Copper             | KUC | 2012-13            | 40° 34' 00" or<br>40.56660°    | 112° 05' 33" or<br>112.09243°    | 5440         | 1658        |

| Table 2 | Locations of | automatic | weather | stations |
|---------|--------------|-----------|---------|----------|
|         | Locations of | automatic | weather | Stations |

# **Bingham Mine Experiment: 2010-2011**

The 2010-2011 winter was characterized by many cloudy cold-air pools.

Sites where data were collected in the 2010-2011 Bingham Mine experiments are shown below in Figures 1 and 2. Additional data are available for this winter from a National Science Foundation (NSF)-funded research program conducted in the Salt Lake Valley. The NSF program was called the Persistent Cold-Air Pool Study (PCAPS); data from this study can be accessed at http://pcaps.utah.edu. A number of peer-reviewed journal articles are available from the NSF and Bingham studies. See the reference section at the end of this report.



Figure 1. Sites in the immediate vicinity of the mine in 2010-2011. The red dots are HOBO® automatic temperature dataloggers, the triangle is the UU scanning Doppler wind LiDAR, the cyan colored square is the UU AWS at Bingham Pass (BCP), and the remaining sites with the alphanumeric IDs are the KUC AWSes.



Figure 2. Line of HOBO® temperature data loggers (A-Q) outside the mine in 2010-2011. Letter designators are defined in the first column of Table 3 below. From Acme Mapper (mapper.acme.com).

## Automatic temperature data loggers (HOBO®s)

Number of loggers: 33 Period of record: 1200 UTC 30 Nov 2010 to 25, 26, or 30 Apr 2011. Sites: see table below

33 HOBO® temperature data loggers were deployed with thermistor temperature sensors exposed in self-aspirated radiation shields. Most of the HOBO®s also measured relative humidity (RH). Loggers were set to record samples at 5-min intervals. Altitudes are approximately  $\pm$  25 m. Sites are shown in maps above.

Table 3. Locations of HOBO® temperature data loggers during the winter of 2010-2011. Site names designate whether they were inside the mine (Imxxxx), outside the mine (Omxxxx) or on the Kennecott line (Klxxxx) running from the base of the outside of the mine into Riverton, UT.

| Site ID      | RH? | Latitude (°N) | Longitude  | Actual       |
|--------------|-----|---------------|------------|--------------|
|              |     |               | (°E)       | elevation (m |
|              |     |               |            | MSL)         |
| Im1372BOTTOM |     | 40.52254      | -112.14875 | 1355         |
| lm1400       |     | 40.51969      | -112.15157 | 1388         |
| Im1450HB     |     | 40.52239      | -112.15393 | 1445         |
| lm1450       |     | 40.52350      | -112.15091 | 1480         |
| lm1550       |     | 40.51795      | -112.15995 | 1543         |
| lm1600       |     | 40.52603      | -112.14447 | 1607         |
| lm1650       |     | 40.52256      | -112.14235 | 1670         |
| lm1700       |     | 40.51859      | -112.14319 | 1700         |
| lm1800       |     | 40.52833      | -112.14171 | 1773         |
| Im1800B      |     | 40.52565      | -112.14052 | 1805         |
| lm1850       |     | 40.53198      | -112.14393 | 1843         |
| lm1900       |     | 40.53410      | -112.15152 | 1885         |
| lm1950       |     | 40.53161      | -112.15813 | 1935         |
| lm2000       |     | 40.52307      | -112.16788 | 2010         |
| lm2050       | No  | 40.52769      | -112.13165 | 2052         |
| lm2100       |     | 40.52946      | -112.12551 | 2107         |
| lm2150-Q     |     | 40.53029      | -112.12025 | 2157         |
| Im2050WEST-P | No  | 40.51882      | -112.17030 | 2057         |
| Om2000-O     |     | 40.55149      | -112.12614 | 1997         |
| Om1950-N     | No  | 40.55229      | -112.12026 | 1950         |
| Om1900-M     |     | 40.54837      | -112.11611 | 1898         |
| Om1850-L     | No  | 40.54101      | -112.11269 | 1850         |
| Om1800-K     |     | 40.53614      | -112.11123 | 1813         |
| Om1750-J     | No  | 40.53276      | -112.10670 | 1765         |
| Om1700-I     |     | 40.52272      | -112.09960 | 1712         |
| Om1650-H     | No  | 40.52382      | -112.09233 | 1673         |
| KI1600-G     |     | 40.53264      | -112.08009 | 1608         |
| KI1550-F     | No  | 40.53709      | -112.05581 | 1551         |
| KI1500-E     |     | 40.53720      | -112.03304 | 1503         |
| KI1450-D     | No  | 40.54528      | -111.99863 | 1461         |
| KI1400-C     |     | 40.51361      | -111.97361 | 1395         |
| KI1350-B     |     | 40.55111      | -111.93772 | 1354         |
| KI1325LOW-A  |     | 40.51985      | -111.91613 | 1328         |

#### LiDAR winds

Period of Record: 09 February 2011 - 04 May 2011 Site: 40.52350°N, -112.1510°E, 1480 m MSL

The Halo Streamline wind lidar was delivered to UU in early January and the lidar and various communication approaches were tested at a location near the center of the Salt Lake Valley (PCAPS/ISS site; N 40.60056, W 111.92556) before being deployed at the mine on 9 Feb 2011. The range gates were set to 24 m and the lidar was programmed to cycle through a variety of scanning strategies to familiarize ourselves with the lidar and its software. The processed daily wind profiles report the range gate and the wind direction and wind speed from the Doppler Beam Swinging (DBS) scans at 5-min intervals. The 'tar' files provided with the data disk include data from all scanning strategies (DBS, stare, etc.).

### Automatic weather stations (KUC and UU)

15-min-average data were available from eight KUC-owned automatic weather stations during this winter. Six were in the immediate vicinity of the Bingham Mine (see Fig. 1). Data were processed in a batch for the 6 stations for both the winters of 2010-2011 and 2011-2012 (see dates in table below). Data are in raw format for the remaining stations. Table 4. Periods of record and meteorological variables sampled at KUC and UU automatic weather stations during the winter of 2010-2011.

| Site       | Period of record      | Variables                    | Avg    |
|------------|-----------------------|------------------------------|--------|
| Large      | 1645 MST 07 Dec 2010- | WS, WD, Sig, Gust, T, RH, P, | 15-min |
| Reservoir  | 1645 MST 10 Feb 2011  | Rain, BATT                   |        |
|            | and                   |                              |        |
|            | 0530 MST 19 Feb 2011- |                              |        |
|            | 1615 MST 12 May 2011  |                              |        |
| Dry Fork   | 1415 MST 17 Dec 2010- | WS, WD, Sig, Gust, T, RH, P, | 15-min |
|            | 1100 MST 01 May 2012  | Rain, AvSR, BATT             |        |
| Code 51    | 1345 MST 16 Dec 2010- | WS, WD, Sig, Gust, T, RH, P, | 15-min |
|            | 1100 MST 01 May 2012  | Rain, AvSR, BATT             |        |
| Bingham    | 1205 MST 03 Dec 2010- | BATT, T, RH, Kdn, P, WS, WD  | 5-min  |
| Pass       | 0850 MST 04 May 2011  |                              |        |
| East Butte | 0800 MST 28 Dec 2010- | WS, WD, Sig, Gust, T, RH, P, | 15-min |
|            | 1115 MST 01 May 2012  | Rain, AvSR, BATT             |        |
| Keystone   | 1530 MST 16 Dec 2010- | WS, WD, Sig, Gust, T, RH, P, | 15-min |
|            | 1100 MST 01 May 2012  | Rain, AvSR, AvNR, BATT       |        |
| SAPP       | 1515 MST 09 Dec 2010- | WS, WD, Sig, Gust, T, RH, P, | 15-min |
|            | 1115 MST 01 May 2012  | Rain, AvSR, AvSWE, BATT      |        |
| Galena     | 1330 MST 09 Dec 2010- | WS, WD, Sig, Gust, T, RH, P, | 15-min |
|            | 1115 MST 01 May 2012  | Rain, AvSR, AvSWE, BATT      |        |
| Castro     | 0945 MST 08 Dec 2010- | WS, WD, Sig, Gust, T, RH, P, | 15-min |
|            | 0845 MST 21 Jan 2011  | Rain, AvSR, BATT             |        |

Table 4. Automatic weather station periods of record, variables and averaging times.

## **Bingham Mine Experiment: 2011-2012**

The 2011-2012 winter was characterized by few cold-air pools.



Figure 3. Sites used in 2011-2012. The red dots are HOBO®s, the blue triangle is the LiDAR, the cyan colored square is the AWS at Bingham Pass (BCP), and the remaining sites with alphanumeric IDs are the KUC automatic weather stations.



Figure 4. Line of HOBO®s (A-S) outside of the mine in 2011-2012. Labels are defined in the first column of Table 9 below. From Acme Mapper (mapper.acme.com).



Figure 5. Close-up map of partial HOBO® line (F-S) outside the mine in 2011-2012. From Acme Mapper (mapper.acme.com).

## Automatic temperature data loggers (HOBO®s)

Number of loggers: 37 Period of record: 0000 UTC 19 Dec 2011 - 0955 UTC 03 Mar 2012, 5-min data Sites: see table below

37 HOBO®s were deployed in and around the mine in 2011-2012. These were at different sites than for 2010-2011, with HOBO®s outside the mine starting down the Burma Road rather than along the mine access road. There were a limited number of HOBO®s with relative humidity sensors, as in the year before. H17 was buried in snow partway through the winter. H09 was lost and later recovered. Locations: H01 was at the bottom of the mine; H03 was co-located with the lidar; H07 was at the 5390 substation, H09 was at the conveyor; H14 was at the Visitor Center; H15 at Production Control, H19 at the summit of East Butte; H21 at Burma Summit; H25 at Burma Gate; H29 at Lark; H32 was outside the haul road; H33 at the high school; H34 at the glass house; H35 at a gas station; H36 at Enterprise, and H37 at the Golf Course.

| Site ID | RH? | Latitude (°N) | Longitude  | Мар          |
|---------|-----|---------------|------------|--------------|
|         |     |               | (°E)       | elevation (m |
|         |     |               |            | MSL)         |
| H01     |     | 40.52201      | -112.14957 | 1352         |
| H02     |     | 40.52058      | -112.14979 | 1405         |
| H03     |     | 40.51905      | -112.15083 | 1442         |
| H04     | No  | 40.51856      | -112.14831 | 1490         |
| H05     |     | 40.52134      | -112.15845 | 1490         |
| H06     | No  | 40.51885      | -112.16032 | 1525         |
| H07     |     | 40.51880      | -112.14411 | 1643         |
| H08     | No  | 40.52357      | -112.14009 | 1677         |
| H09     |     | 40.52055      | -112.14086 | 1703         |
| H10     | No  | 40.52465      | -112.13861 | 1750         |
| H11     |     | 40.52871      | -112.14088 | 1797         |
| H12     | No  | 40.53196      | -112.14389 | 1843         |
| H13     |     | 40.53418      | -112.15151 | 1888         |
| H14     | No  | 40.53550      | -112.14787 | 1958         |
| H15     |     | 40.53577      | -112.14520 | 2040         |
| H16     | No  | 40.53336      | -112.13684 | 2037         |
| H17     |     | 40.52785      | -112.13309 | 2037         |
| H18     |     | 40.52756      | -112.12529 | 2120         |
| H19-S   |     | 40.53643      | -112.13602 | 2247         |
| H20-R   |     | 40.53710      | -112.13377 | 2187         |
| H21-Q   |     | 40.51772      | -112.12144 | 2045         |
| H22-P   |     | 40.51943      | -112.12151 | 2003         |
| H23-O   | No  | 40.51659      | -112.11859 | 1962         |
| H24-N   |     | 40.51767      | -112.11558 | 1905         |
| H25-M   | No  | 40.51473      | -112.11452 | 1845         |
| H26-L   | No  | 40.53720      | -112.11140 | 1822         |
| H27-K   |     | 40.51473      | -112.11155 | 1807         |
| H28-J   |     | 40.51257      | -112.10523 | 1742         |
| H29-I   |     | 40.52316      | -112.09756 | 1702         |
| H30-H   | No  | 40.52384      | -112.09235 | 1666         |
| H31-G   |     | 40.53257      | -112.08001 | 1608         |
| H32-F   | No  | 40.53706      | -112.05581 | 1551         |
| H33-E   |     | 40.53716      | -112.03297 | 1503         |
| H34-D   | No  | 40.54523      | -111.99867 | 1461         |
| H35-C   |     | 40.53765      | -111.97768 | 1391         |
| H36-B   | No  | 40.55115      | -111.93819 | 1352         |
| H37-A   |     | 40.51984      | -111.91613 | 1328         |

Table 5. Locations of HOBO® temperature data loggers during the winter of 2011-2012.

### LiDAR winds

Period of Record: 20 December 2011 - 06 April 2012 Site: 40.51905°N, 112.15083°W, 1445 m MSL

The lidar was operated much like in 2010-2011, but from a different site. 'Tar' files include data from all scanning strategies. Wind profile data are available in separate files every 5 minutes. These data, which include range gate, wind direction and wind speed are plotted as daily wind speed and wind vector profile time-height cross sections.

#### Automatic weather stations

Processed automatic weather station data for this year are duplicates of the processed files described for 2010-2011. The 6 closest KUC stations to the mine are fully processed and there were no changes in site locations between these two winters. Castro and Large Reservoir were located a long way from the mine; while raw data are available for these two sites, the data have not been processed. The UU AWS at Bingham Pass was located in the same spot as for 2010-2011 and the same variables were measured. These data are in UTC, starting at 0000 UTC 20 Dec 2011 and running through 1430 UTC 02 May 2012. The data are in a raw CSV-delimited file.

| Site       | Period of record       | Variables                          | Avg    |
|------------|------------------------|------------------------------------|--------|
| Large      | Missing                | WS, WD, Sig, Gust, T, RH, P, Rain, | 15-min |
| Reservoir  |                        | BATT                               |        |
| Dry Fork   | 1415 MST 17 Dec 2010-  | WS, WD, Sig, Gust, T, RH, P, Rain, | 15-min |
|            | 1100 MST 01 May 2012   | AvSR, BATT                         |        |
| Code 51    | 1345 MST 16 Dec 2010-  | WS, WD, Sig, Gust, T, RH, P, Rain, | 15-min |
|            | 1100 MST 01 May 2012   | AvSR, BATT                         |        |
| Bingham    | 0000 UTC 20 Dec 2011 - | BATT, T, RH, Kdn, P, WS, WD        | 5-min  |
| Pass       | 1430 UTC 02 May 2012   |                                    |        |
| East Butte | 0800 MST 28 Dec 2010-  | WS, WD, Sig, Gust, T, RH, P, Rain, | 15-min |
|            | 1115 MST 01 May 2012   | AvSR, BATT                         |        |
| Keystone   | 1530 MST 16 Dec 2010-  | WS, WD, Sig, Gust, T, RH, P, Rain, | 15-min |
|            | 1100 MST 01 May 2012   | AvSR, AvNR, BATT                   |        |
| SAPP       | 1515 MST 09 Dec 2010-  | WS, WD, Sig, Gust, T, RH, P, Rain, | 15-min |
|            | 1115 MST 01 May 2012   | AvSR, AvSWE, BATT                  |        |
| Galena     | 1330 MST 09 Dec 2010-  | WS, WD, Sig, Gust, T, RH, P, Rain, | 15-min |
|            | 1115 MST 01 May 2012   | AvSR, AvSWE, BATT                  |        |
| Castro     | 0945 MST 08 Dec 2010-  | WS, WD, Sig, Gust, T, RH, P, Rain, | 15-min |
|            | 0845 MST 21 Jan 2011   | AvSR, BATT                         |        |

Table 6. Periods of record and meteorological variables sampled at KUC and UU automatic weather stations during the winter of 2011-2012.

# **Bingham Mine Experiment: 2012-2013**

The 2012-2013 winter had many cold-air pools.



Figure 6. Sites used in 2012-2013. The red dots are HOBO®s, and the sites with numeric IDs are the KUC automatic weather stations.



Figure 7. Line of HOBO®s (A-M) outside the mine in 2012-2013. Labels are defined in the first column of Table 7 below. From Acme Mapper.

## Automatic Temperature data loggers (HOBO®s)

Number of loggers: 15 Period of record: 0000 UTC 20 Dec 2012 - 1955 UTC 19 May 2013, 5-min data Sites: see table below

15 HOBO®s were deployed in the winter of 2012-2013, with no HOBO®s placed inside the mine. A major landslide occurred in the mine on Wednesday, 10 April 2013. We were fortunate to have no equipment inside the mine this winter, although we lost the top-most two HOBO®s in the landslide. The lowest elevation data started on 8 January 2013. Elevations are estimated for the three lowest elevation sites.

| Site ID | Latitude<br>(°N) | Longitude<br>(°E) | Nominal<br>elevation<br>(m MSL) | Google_<br>Earth<br>elevation<br>(m MSL) | HOBO®<br>serial<br>number |
|---------|------------------|-------------------|---------------------------------|------------------------------------------|---------------------------|
| H163-O  | 40.53640         | -112.13606        | 2250                            | 2251                                     | 9806349                   |
| H164-N  | 40.53701         | -112.13387        | 2200                            | 2196                                     | 9806352                   |
| H165-M  | 40.53260         | -112.12130        | 2150                            | 2146                                     | 9806344/6                 |
| H166-L  | 40.53148         | -112.11769        | 2100                            | 2107                                     | 9784029                   |
| H167-K  | 40.53426         | -112.12018        | 2050                            | 2071                                     | 9806358                   |
| H162-J  | 40.55149         | -112.12638        | 2000                            | 2003                                     | 9806336                   |
| H161-I  | 40.55221         | -112.12024        | 1950                            | 1956                                     | 9806337                   |
| H160-H  | 40.54833         | -112.11617        | 1900                            | 1905                                     | 9806346                   |
| H159-G  | 40.54134         | -112.11272        | 1850                            | 1860                                     | 9806353                   |
| H158-F  | 40.53611         | -112.11119        | 1800                            | 1817                                     | 9784028                   |
| H157-E  | 40.53281         | -112.10674        | 1750                            | 1769                                     | 9806342                   |
| H156-D  | 40.52266         | -112.09967        | 1700                            | 1721                                     | 9806354                   |
| H169-C  | 40.52383         | -112.09232        | 1650                            | 1673                                     | 9806339                   |
| H168-B  | 40.53264         | -112.08007        | 1600                            | 1608                                     | 9806356                   |
| H170-A  | 40.53840         | -112.06965        | 1600                            | 1583                                     | 9784027                   |
|         |                  |                   |                                 |                                          | Ceilometer                |
|         |                  |                   |                                 |                                          | & HOBO®                   |

Table 7. Locations of HOBO® temperature data loggers during the winter of 2012-2013.

## Ceilometer outside mine

Period of record: 12 Jan to 31 Mar 2012

Site: 11702 Bacchus Highway, Herriman, UT 84096, 40.53840°N, -112.06965°E, ~1600 m MSL

A Vaisala Model CL-31 laser ceilometer was operated during the winter of 2012-2013 at a site on KUC land next to Highway 111 near the intersection of W 11800 S. Vertical backscatter profiles were generated every 16 seconds to a maximum range of 7700 m, with range gates every 10 m. These data were automatically sent to the University of Utah every 24 hours through an AT&T phone modem. The data were then automatically plotted and uploaded to a webpage for access by the public. Because of phone modem dropouts there were substantial periods of missing data (Fig. 8)

Backscatter figures have been generated for each day for two height ranges: 2000 and 3500 m AGL.



Figure 8. Missing hourly ceilometer data for the winter of 2012-2013.

## **KUC AWSes**

All stations except C2 have 15-min wind speed (m/s), wind gust (m/s), wind direction (deg), sigma, average temperature (°C), and average relative humidity (%). For C2, we have only 1-min wind speed and direction and only for 1 November. Castro, Galena, and Large Reservoir are missing data. The processed data files have filled in missing data with NaNs and a ReadMe file describes the columns of data. Figures for each site for the entire time period are also in the AWS folder. Table 8. Periods of record and meteorological variables sampled at KUC automatic weather stations during the winter of 2012-2013.

| Site       | Pd of record           | Variables                   | Avg    |
|------------|------------------------|-----------------------------|--------|
| Large      | 0015 MST 01 Nov 2012-  | WS, WD, Sigma, Gust, T, RH  | 15-min |
| Reservoir  | 0000 MST 01 Apr 2013   |                             |        |
| Dry Fork   | 0015 MST 01 Nov 2012-  | WS, WD, Sigma, Gust, T, RH  | 15-min |
|            | 0000 MST 01 Apr 2013   |                             |        |
| Code 51    | 0015 MST 01 Nov 2012-  | WS, WD, Sigma, Gust, T, RH  | 15-min |
|            | 1200 MST 01 April 2013 |                             |        |
| East Butte | 0015 MST 01 Nov 2012-  | WS, WD, Sigma, Gust, T, RH  | 15-min |
|            | 1200 MST 01 April 2013 |                             |        |
| Keystone   | 0015 MST 01 Nov 2012-  | WS, WD, Sigma, Gust, T, RHv | 15-min |
|            | 1200 MST 01 April 2013 |                             |        |
| SAPP       | 0015 MST 01 Nov 2012-  | WS, WD, Sigma, Gust, T, RH  | 15-min |
|            | 1200 MST 01 April 2013 |                             |        |
| Galena     | 0015 MST 01 Nov 2012-  | WS, WD, Sigma, Gust, T, RH  | 15-min |
|            | 1200 MST 01 April 2013 |                             |        |
| Castro     | 1015 MST 16 Nov 2012-  | WS, WD, Sigma, Gust, T, RH  | 15-min |
|            | 0415 MST 19 Jan 2013   |                             |        |
|            | and                    |                             |        |
|            | 0115 MST 18 Feb 2013-  |                             |        |
|            | 0000 MST 01 Apr 2013   |                             |        |
| Copperton  | 0011 MST 01 Nov 2012-  | WS, WD (one day only)       | 1-min  |
| AQ C2_1    | 0010 MST 02 Nov 2012   |                             |        |
| Copper     | 0015 MST 01 Nov 2012-  | WS, WD, Sigma, Gust, T, RH  | 15-min |
|            | 0000 MST 01 Apr 2013   | _                           |        |

# **Bingham Mine Experiment: 2013-2014**

This winter had many cold-air pools.



Figure 9. Sites used in 2013-2014. The red dots are HOBO®s, the blue triangle is the ceilometer, and the sites with alphanumeric IDs are the KUC automatic weather stations.



Figure 10. Line of HOBO®s (A-R) outside the mine in 2013-2014. Labels are defined in the first column of Table 9 below. Site A is off the map far to the NE near 9th East and 9th South in Salt Lake City. From Acme Mapper (mapper.acme.com).

## Temperature data loggers

Number of loggers: 28 Period of record: 0000 UTC 3 Dec 2013 - 1940 UTC 02 May 2014, 10-min data Sites: see table below. 2 HOBO®s were lost during the winter (plowed under?): 187 and 197

| Waypoint      | inside/outside | Latitude | Longitude  | Elevation | Description     |
|---------------|----------------|----------|------------|-----------|-----------------|
|               |                | (°N)     | (°E)       | (m MSL)   |                 |
| 198           | in             | 40.52063 | -112.15560 | 1405      | bottom/PITRAM   |
| 208           | in             | 40.51923 | -112.15026 | 1457      | ceilo/pump      |
| 196           | in             | 40.52265 | -112.15628 | 1472      | 10%West         |
| 195           | in             | 40.51817 | -112.16022 | 1544      | 10%SWCorner     |
| 194           | in             | 40.51696 | -112.15353 | 1608      | 10%PipelineRd   |
| 193           | in             | 40.51867 | -112.14426 | 1648      | 10%Pump         |
| 192           | in             | 40.51986 | -112.14175 | 1710      | 10%Laser        |
| 191           | in             | 40.53174 | -112.14188 | 1830      | 10%Slide        |
| 190           | in             | 40.53518 | -112.15096 | 1890      | 10%Goat         |
| 189           | out-in         | 40.54566 | -112.13992 | 1979      | Bingham_Pass    |
| 188-R         | out-in         | 40.54046 | -112.13638 | 2231      | EastButte       |
| 186-Q         | out            | 40.52589 | -112.12430 | 2131      | CodeX           |
| 185-P         | out            | 40.53651 | -112.12099 | 2089      | CodeX           |
| 184-0         | out            | 40.55149 | -112.12632 | 2014      | Access_road     |
| 183-N         | out            | 40.55243 | -112.12072 | 1970      | Access_road     |
| 182-M         | out            | 40.54848 | -112.11626 | 1915      | Access_road     |
| 1 <u>81-L</u> | out            | 40.54148 | -112.11277 | 1873      | Access_road     |
| 180-K         | out            | 40.53624 | -112.11134 | 1831      | Access_road     |
| 179-J         | out            | 40.53275 | -112.10663 | 1789      | Access_road     |
| 178-l         | out            | 40.52266 | -112.09943 | 1720      | Access_road     |
| 199-H         | out            | 40.52396 | -112.09221 | 1673      | LarkGate        |
| 205-G         | out            | 40.56768 | -112.08011 | 1634      | zone6_Copperton |
| 200-F         | out            | 40.53842 | -112.06944 | 1583      | HWY111Meyers    |
| 204-E         | out            | 40.58071 | -112.05104 | 1539      | terminal field  |
| 203-D         | out            | 40.57224 | -112.02443 | 1496      | 3MG_field       |
| 202-C         | out            | 40.58506 | -111.99796 | 1435      | oldHW           |
| 201-B         | out            | 40.58707 | -111.97312 | 1397      | cemeterytank    |
| 207-A         | out            | 40.75150 | -111.86759 | 1311      | backyard        |

Table 9. Locations of HOBO® temperature data loggers during the winter of 2013-2014.

## Ceilometer inside mine

Period of record: 18 Dec 2013 through 28 Mar 2014 Site: 40.51923°N latitude, -112.15026°E longitude, 1457 m MSL

A Vaisala Model CL31 laser ceilometer was operated during the winter of 2013-2014 at a site near the floor of the Bingham Mine. Vertical backscatter profiles were generated every 16 seconds to a maximum range of 7700 m, with range gates every 10 m. These data were stored locally on a Raspberry Pi (RPI) computer. At the end of the day the RPI assembles and compresses a daily file that is copied to a local directory. Servers at the

University then automatically establish a connection to the RPI and download the data to our computer file system, where it is processed, quality controlled, plotted and uploaded to a publicly accessible webpage.

### Ceilometer outside mine

Period of record: 19 Dec 2013 through 22 Apr 2014 Site: 40.75150°N latitude, -112.86759°E longitude, 1307 m MSL

A second Vaisala Model CL-31 laser ceilometer was operated during the winter of 2013-2014 at a site near 9th East and 9th South in Salt Lake City. Vertical backscatter profiles were generated every 16 seconds to a maximum range of 7700 m, with range gates every 10 m. These data were processed like the ceilometer data from inside the mine.

## **KUC AWSes**

Table 10. Periods of record and meteorological variables sampled at KUC automatic weather stations during the winter of 2013-2014. The East Butte site was destroyed in a landslide in April 2013, so that no data are available for the winter of 2013-2014.

| Site       | Period of record      | Variables (NOT YET KNOWN)            | Avg    |
|------------|-----------------------|--------------------------------------|--------|
| Large      | 0015 MST 01 Jan 2013- | WS, WD, Sig, Gust, T, RH, P, Rain,   | 15-min |
| Reservoir  | 2345 MST 17 Jul 2014  | AvSR, BATT, WS_mph, T°F              |        |
| Dry Fork   | 0000 MST 01 Jan 2013- | WS, WD, Sig, Gust, T, RH, P, Rain,   | 15-min |
|            | 2345 MST 17 Jul 2014  | AvSR, BATT, WS_mph, T°F              |        |
| Code 51    | 0000 MST 01 Jan 2013- | WS, WD, Sig, Gust, T, RH, P, Rain,   | 15-min |
|            | 2345 MST 17 Jul 2014  | AvSR, BATT, WS_mph, T°F              |        |
| East Butte | 0000 MST 01 Jan 2013- | WS, WD, Sig, Gust, T, RH, P, Rain,   | 15-min |
|            | 2000 MST 10 Apr 2014  | AvSR, BATT, WS_mph, T°F              |        |
| Keystone   | 0000 MST 01 Jan 2013- | WS, WD, Sig, Gust, T, RH, P, Rain,   | 15-min |
|            | 2300 MST 17 Jul 2014  | AvSR, AvNR, BATT, WS_mph, T°F        |        |
| SAPP       | 0000 MST 01 Jan 2013- | WS, WD, Sig, Gust, T, RH, P, Rain,   | 15-min |
|            | 2345 MST 17 Jul 2014  | AvSR, AvSWE, BATT                    |        |
| Galena     | 0000 MST 01 Jan 2013- | WS, WD, Sig, Gust, T, RH, P, Rain,   | 15-min |
|            | 2345 MST 17 Jul 2014  | AvSR, AvSWE, BATT, WS_mph, T°F       |        |
| Castro     | 0000 MST 01 Jan 2013- | WS, WD, Sig, Gust, T, RH, P, Rain,   | 15-min |
|            | 2345 MST 17 Jul 2014  | AvSR, BATT, WS_mph, T°F              |        |
| Copper     | 0000 MST 01 Jan 2013- | WS, WD, Sigma, Gust, T, RH, P, Rain, | 15-min |
|            | 2345 MST 17 Jul 2014  | AvSR, BATT, WS_mph, T°F              |        |