Atmos 5300 Exercise on Turbulent Fluxes

1. The surface sensible heat flux $F_s = \rho c_p \overline{w'T'} = 1000 \text{ W m}^{-2}$ and the atmospheric boundary layer (ABL) depth h = 500 m. How much does the average ABL temperature change during 3 h? Use $\rho = 1.2 \text{ kg m}^{-3}$.

2. Same as problem 1 but in this case $F_s = -50$ W m⁻² and h = 50 m.

3. 1 cm of water evaporates from the ocean into an ABL that is 500 m deep.

(a) What is the change in the average ABL water vapor mixing ratio (mass of water vapor per unit mass of dry air), Δq ? Use $\rho = 1.2$ kg m⁻³.

(b) If this process occurs over 4 h, what is the average surface flux of water vapor, $F_q = \rho \overline{w'q'}$?

(c) What is the latent heat flux, LF_q ? $L = 2.5 \times 10^6 \text{ J kg}^{-1}$ is the latent heat of vaporization.

4. The turbulent momentum flux components are $\overline{u'w'} = -0.1 \text{ m}^{-2}\text{s}^{-2}$ and $\overline{v'w'} = 0$. (a) What is the friction velocity, u_* ? [WH Eq. 9.14]

(b) What is the magnitude of the surface stress? Use $\rho = 1.2 \text{ kg m}^{-3}$.[WH Eq. 9.14] (b) If h = 500 m, how much would the *vertical averages* of the horizontal velocity components, \bar{u} and \bar{v} , change over 6 h *due to the surface stress alone*? Assume that the wind velocity and surface stress vectors are parallel. [The governing equations for \bar{u} and \bar{v} are given on slide 31 (of 39) of

https://www.inscc.utah.edu/~krueger/5220/WH-ABL-2.pdf.]

(c) What additional forces act to maintain the ABL wind?