Turbulence Kinetic Energy (TKE) Equation

To study imbulence production we form an eg. for TKE: (1) Subtract mean momentum egs. (for $\bar{u}_i, \bar{v}_i, \bar{v}_i$) from egs. In u, v, w to get egs. for u', v', w' (2) multiply egs. for a', v', w' by a', v', w', respectivelys and sum. (3) Average the result to get an es. for u¹² + r¹² + w¹², which is 2 × TKE per unit mass.

resulting eq. is complicated. It can The symbolically as: be witten D (TKE) MP + BPL + TR - E ~ Pt (5,14)mechanical buoyant' redist, frictional (viscous) (shear) production by turb, dissipation transport production or loss >0 & pressurp forces

D (TKE) MP + BPL + TR - E ~ Dt (5,14)mechanical buoyant redist, frictional (viscous) (shear) production by turb, dissipation transport production or loss >0 & pressurp forces

conversion between mean flow potential energy BPL and turbulent K.E.

 $BPL = \frac{9}{\theta_0} \overline{w'\theta'}.$

P.E. BPLL TKE

Fn

air,

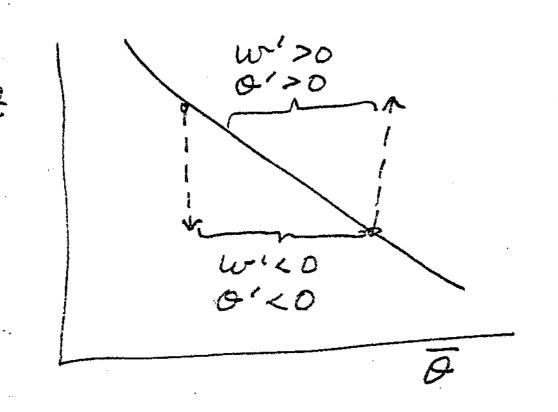
Recall that for a single parcel, $\frac{1}{2}(W_2^2 - W_1^2) = \int_{Z_1}^{Z_2} \frac{9}{00} \theta' dZ,$ where $\phi' = \phi - \overline{\phi}$. $\Delta t = \Delta Z/W$; where $\Delta Z = Z_2 - Z_1$; and $w = \frac{1}{2}(w_1 + w_2)$. Divide $\frac{1}{2} \frac{\left(w_2^2 - w_1^2\right)}{\Delta t} = \frac{w}{\Delta z} \int_{Z_1}^{Z_1 + \Delta z} \frac{g}{\sigma_0} g' dz.$

Recall that for a single parcel, $\frac{1}{2}(w_{2}^{2}-w_{1}^{2}) = \int_{Z_{1}}^{Z_{2}} \frac{9}{Q_{0}} Q' dZ,$ where $\phi' = \phi - \overline{\phi}$. $\Delta t = \Delta E/w$; where $\Delta E = Z_2 - Z_1$; and $w = \frac{1}{2}(w_1 + w_2)$. Divide $\frac{1}{2} \frac{\left(w_2^2 - w_i^2\right)}{\Delta t} = \frac{w}{\Delta z} \int_{Z_i}^{Z_i + \Delta z} \frac{g}{\theta_0} \frac{g'}{dz}.$ By fundamental theorem of calculus, as st, SZ>0, $\frac{d}{dt}\left(\frac{w^2}{2}\right) = \frac{9}{\theta_0} w \theta'.$

Recall that for a single parcel, $\frac{1}{2}(w_{2}^{2}-w_{1}^{2}) = \int_{Z_{1}}^{Z_{2}} \frac{9}{Q_{0}} Q' dZ,$ where $\phi' = \phi - \overline{\phi}$. $\Delta t = \Delta E/w$; where $\Delta E = Z_2 - Z_1$; and $w = \frac{1}{2}(w_1 + w_2)$. Divide by $\frac{1}{2} \frac{\left(w_2^2 - w_i^2\right)}{\Delta t} = \frac{w}{\Delta z} \int_{z_i}^{z_i + \Delta z} \frac{g}{\theta_0} \theta' dz.$ By fundamental theorem of calculus, as st, SZ>0, $\frac{d}{dt}\left(\frac{w^2}{2}\right) = \frac{9}{\theta_2} w \theta'.$ But w= w+w'zw' since w=0, so $\left|\frac{d}{dt}\left(\frac{w^{\prime L}}{2}\right) = \frac{9}{00}w^{\prime}\theta^{\prime}\right|$ Average to get $\frac{d}{dt}\left(\frac{w^{2}}{2}\right) = \frac{9}{\rho_{x}}w^{2}\rho_{x}$

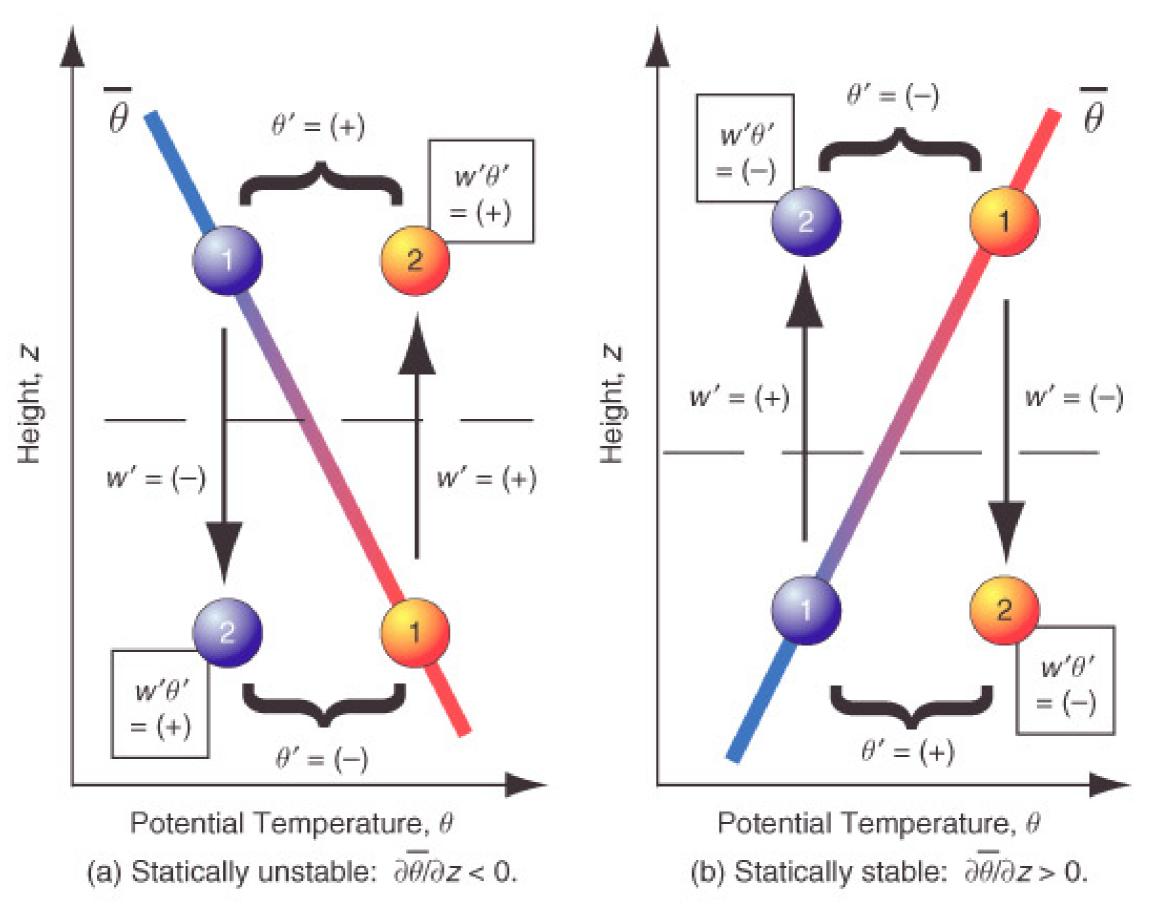
Positive Buoyancy prod. occurs when there is heating at sunface 50 mostable lapse nate an Inelops: overshoot free atmos, B.L. \mathcal{Z} rising air parcel stull, Fig. 11.11 surface laver (unstable) Ā-

Notice that in surface layer, w'o'>0:



•

& protile is stable, w'o' <0, which reduces If stops turbulence. 02



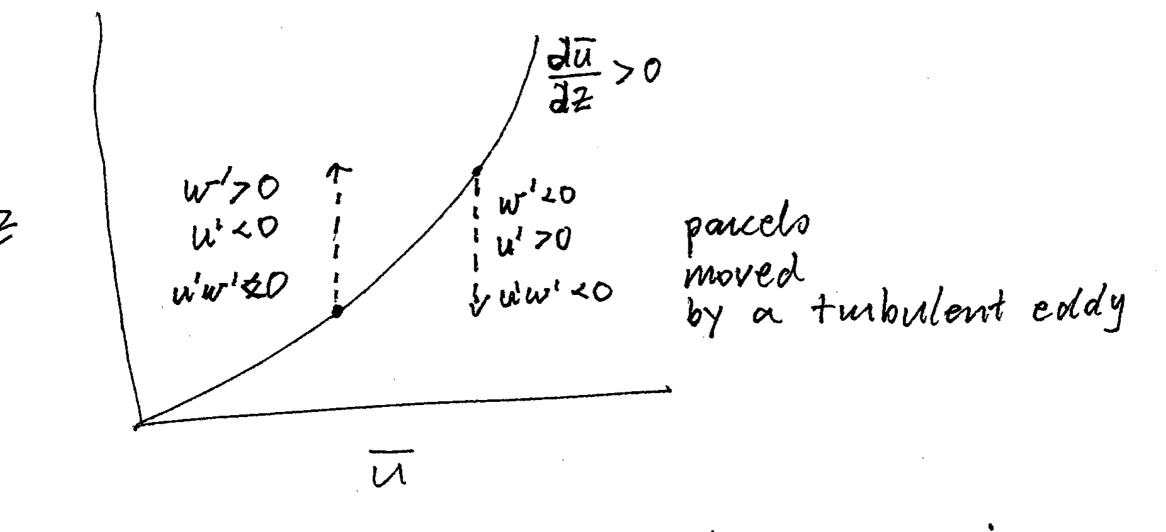
[Adapted from Meteorology for Scientists and Engineers, A Technical Companion book To C. Donald Ahrens' Meteorology Today, 2nd Ed., by Stull, p. 37. Copyright 2000. Reprinted with permission of Brooks/Cole, a division of Thomson Learning: www.thomsonrights.com. Fax 800-730-2215.]

D (TKE) MP + BPL + TR - E 7 D七 (5,14) mechanical buoyant redist, frictional (viscous) (shear) by turb, production dissipation transport production or loss >0 & pressurp forces tenbulent K.E. mP Mean K.E. -u'w' 211

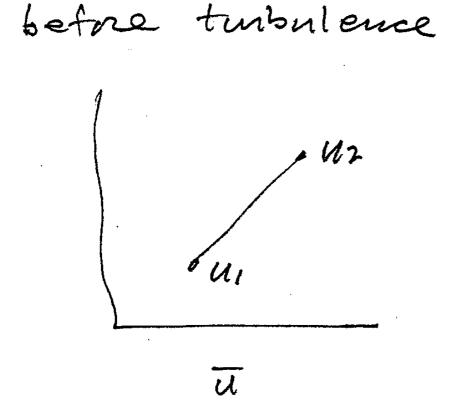
- www.du

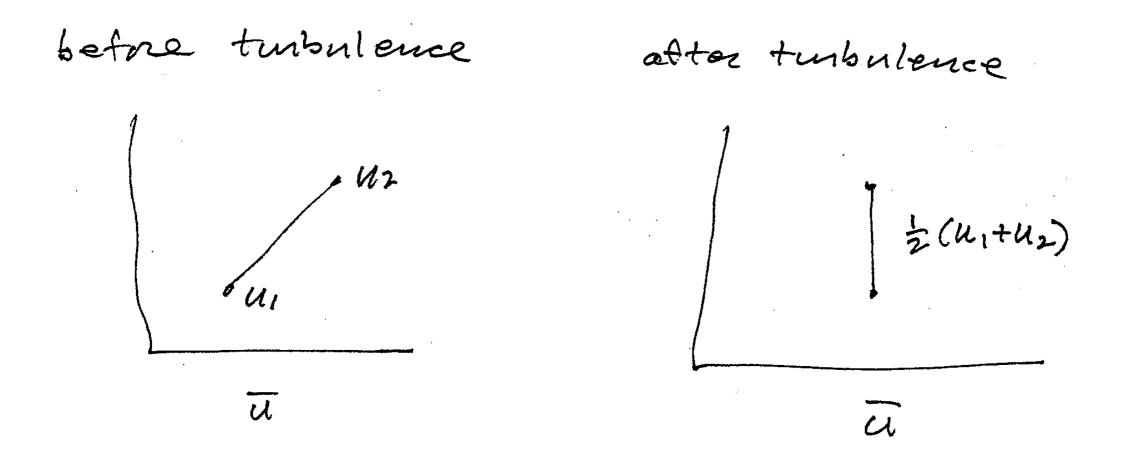
(MP >0 hen momentum flax down gradient of mean momentum.)

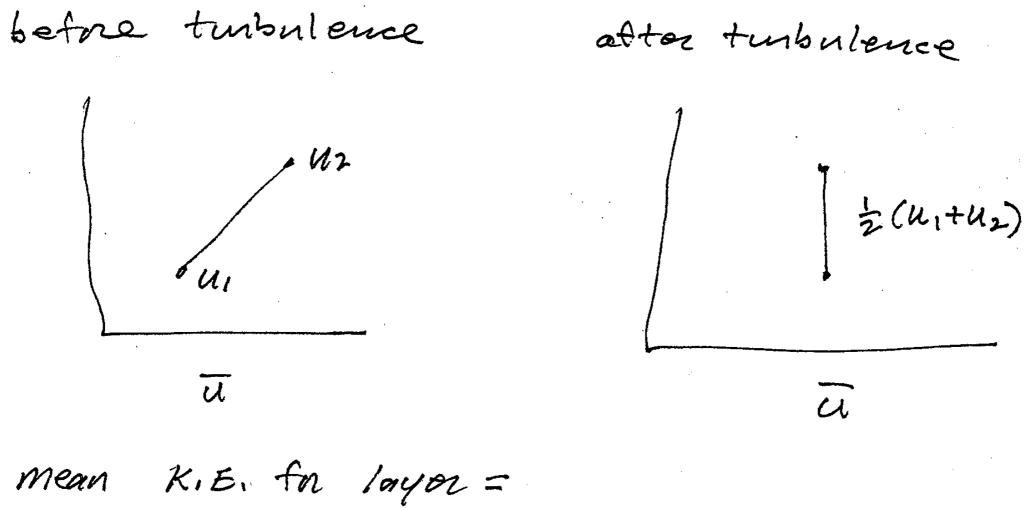
Mechanical (Shear) Production (MP)



momentum is transferred from region of lange II to region of low II, i.e., down gradient; while u'w' <0 and MP>0.

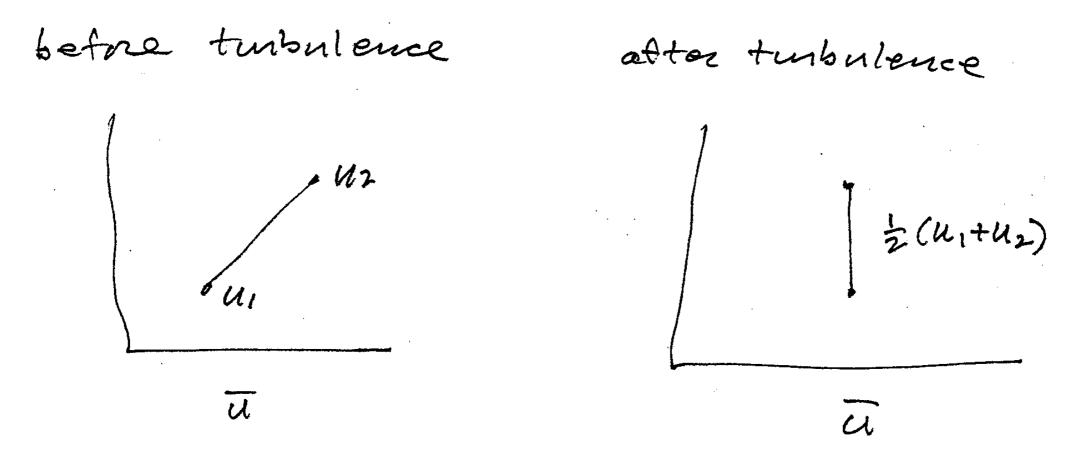






 $\frac{1}{2}(u_1^2 + u_2^2)$

BEFORE



mean K.E. fn layor =

 $\frac{1}{2}(u_1^2 + u_2^2)$ $2\chi_{2}^{2} \left[\frac{1}{2} (u_{1} + u_{2}) \right]^{2}$ $= \frac{1}{4} \left[u_{1}^{2} + u_{2}^{2} + 2u_{1}u_{2} \right]^{2}$

BEFORE

AFTER

What is change in mean K.E. fr layer? Before - After =

 $\frac{1}{2}(u_1^2 + u_2^2) - \left[\frac{1}{2}(u_1 + u_2)\right]^2 = \frac{u_1^2}{2} + \frac{u_2^2}{2} - \frac{u_1^2}{4} - \frac{u_2}{4} - \frac{u_1}{4} - \frac{u_2}{4} - \frac{u_1}{4}u_2$ $= \frac{u_{1}^{2}}{4} + \frac{u_{2}}{4} - \frac{u_{1}u_{2}}{4}$ $=\frac{1}{4}(n_{1}^{2}+n_{2}^{2}-2n_{1}n_{2})$ = $\frac{1}{4} (u_1 - u_2)^2$

Thus, negandless of sign of un-uz, mean K.E. decreases due to mixing by turbulence.

If layer in statically stable, can turbuleace exist? my if mp is large enough: (as measured by flux Richardson number) $R \neq \equiv -\frac{BPL}{mP}$

If layer is statically stable, can turbuleace
exist? may if mp is large enough:
(as measured by
$$flux$$
 Richardson number)
 $Rf \equiv -\frac{BPL}{MP}$.

- If BL is <u>motable</u>, then BPL>D, so Rf<D, Etubulence is produced by convection.

.

If layer in statically stable, can turbulence
exist? only if mp is large enough:
(as measured by
$$flux$$
 Richardson number)
 $Rf \equiv -\frac{BPL}{mp}$.

.

If layer is statically stable, can turbulence
exist? may if mp is large enough:
(as measured by
$$flux$$
 Richardson number)
 $Rf \equiv -\frac{BPL}{mp}$.

.

If layer is statically stable, contrubulence
exist? may if mp is large enough:
(as measured by
$$flux$$
 Richardson number)
 $Rf \equiv -\frac{BPL}{mp}$.

lecreases,

At night, a strong temperature inversion may be produced by nadiative cooling of the te, and the BL depth may be anly a (decameters) In deep, since turbalance is sappressed suntance few higher levels where MP is small and BPL 20. at 2 surface inversion Ā