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Turbulence Kinetic Energy

The kinetic energy of an object with mass m and

speed V' 1is

1

The specific kinetic energy is K E/m. The specific
kinetic energy associated with turbulence is

CRASS R {WJFWJFW}
m 2 ’

or
TiE _ % 02 402+ 02],

where T' K E is turbulence kinetic enerqgy.
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Profiles of velocity standard deviations in the ABL

for various stability conditions
(from Stull, Practical Meteorology, Eqs. 18.24-26)
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Turbulence Kinetic Energy

Ezercise
What is the specific turbulence kinetic energy if

the turbulence is isotropic and o, = 0.5 m s !?

The FEulerian prognostic equation for T K FE is

a(Tgf/m) —Ad+M+B+Tr—e
where
Ad:_aﬁ(TKE/m) EG(TKE/m) w@(TKE/m)
Ox oy 0z

is the advection of T K E by the mean wind veloc-

ity, which has components (u, v, w).



Turbulence Kinetic Energy

The FEulerian prognostic equation for T K F is

HTKE/m)

= Ad+ M + B+ 1Tr —e.
ot

M is mechanical generation of TKE.
B 1s buoyancy generation or consumption ot T KE.
T'r is transport of T K E by turbulence.

e is the viscous dissipation rate of TKE.



Turbulence Kinetic Energy
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Turbulence Kinetic Energy

If U = (TKE/m)'Y? is a turbulent eddy velocity

scale, and L is a turbulent eddy length scale, then
T = L/U is a turbulent eddy time scale.

If there is no generation of TKE, then TKE will
decay due to dissipation with time scale T

(TKE/m) U?> U® (TKE/m)?

T L/U L L

€ v




Let’s look at mechanical generation
and buoyancy generation or
consumption in more detail.
See the slides “TKE Equation.”



Turbulence Kinetic Energy

In a statically stable environment, the existence
of TKE depends on the ratio of buoyancy
consumption (B) and mechanical generation

(M), which define the Richardson number, Ri:

Ri= 2~ ~ i, B
Mo () + (52)°

For Ri < 0.25, laminar flow becomes turbulent.
For Ri > 1, turbulent flow becomes laminar.

For 0.25 < Ri < 1, the existence of turbulence
depends on the flow’s history.



Kelvin-Helmholtz instability of stratified shear flow

145. Kelvin-Helmholtz instability of stratified shear
flow. A long rectangular tube, initially horizontal, is filled
with water above colored brine. The fluids are allowed to
diffuse for about an hour, and the tube then quickly tilted
six degrees, setting the fluids into motion. The brine accel-

erates uniformly down the slope, while the water above
similarly accelerates up the slope. Sinusoidal instability of
the interface occurs after a few seconds, and has here
grown nonlinearly into regular spiral rolls. Thorpe 1971
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Fig. 5.18  Schematic diagram of Kelvin-Helmholtz instability in a laboratory
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2D numerical simulation of Kelvin-Helmholtz instability
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Turbulence Kinetic Energy

® The shapes of eddies in a turbulent flow
depend on the static stability.

® Unstable with rising thermals:
anisotropic turbulence with larger TKE in
vertical component; smoke plumes loop.

® Statically neutral:
isotropic turbulence; smoke plumes cone.

® Statically stable but dynamically unstable:
anisotropic turbulence with larger TKE in
horizontal components; smoke plumes fan.

® Statically and dynamically stable:
No turbulence and no dispersion.
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Turbulent Transport and Fluxes

Q. How does turbulence affect the mean profiles!?

A.Through turbulent fluxes.

Turbulent fluxes appear in the equations for
the mean profiles which are derived from the
equations for the total (or instantaneous or
local) profiles using Reynolds averaging.



Reynolds Averaging

In a turbulent flow, a field variable, such as
velocity or temperature, measured at a point
generally fluctuates rapidly as eddies of various
scales pass the point.

To be truly representative of the large-scale flow,
an average over an interval of time long enough
to average out small-scale eddy fluctuations
denoted by ( )’], but short enough to preserve
trends in the large—scale flow field [denoted by
()] is necessary.

This is called Reynolds Averaging.



Reynolds Averaging

Following the scheme introduced by Reynolds, a
field variable o can be written as

- /
a=0o-+ «

where @ is a running mean (or running
time-average)

1 [
a:Kt/ . a(x,y, z,t)dt.
t— At

2

Here At is chosen so that it is long enough to
average out the short term fluctuations, but
short enough to retain the long term fluctuations.



Reynolds Averaging

We generally associate the slowly-varying
quantities as corresponding to the synoptic-scale,
whereas the turbulent fluctuations are due to
small-scale processes.

Y

T'his distinction between mean flow and
turbulence is justified by the existence of a
spectral gap, a region in frequency space in which
there is relatively little variability on time scales
between about 10 minutes (turbulence scales)
and 10 hours (synoptic scales).




Spectral Intenslty
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Fig. 2.2 Schematic spectrum of wind speed near the ground estimated
from a study of Van der Hoven (1957). )




Reynolds Averaging

Examples
wv=(u+u)v+v) = uv+u +uv+u

— a3 a7 ! /04!

uv+u v+ V+ U
=0 =0

= uv—+u'

Similarly,
w'd =w'6 =0,

so that

wh=w+w)(0+0)=wl+uw'.



Reynolds Averaging

Du 1 0
T, £ f?] Fra;
dt Po ox

Betore applying Reynolds decomposition, we rewrite the total

derivative in flux form:

Du ou ou ou ou <8u v  Ow
= - U - U - w - u |
0z )

Dt ot "oz 9z oy 02
ou Ouu Ouv  Ouw

ot Oz oy Oz




Reynolds Averaging

Separating each dependent variable into mean
and fluctuating parts and then averaging yields

ﬂﬂ+u’u) ({fy(uv—kuv) gz(uwnLuw)

@_%.@(
Dt Ot Oz

Noting that the mean velocity fields satisfy the
continuity equation, we can rewrite this as

Bt =+ s () + 5 (7) + 5 (7)

where

? 0, o 0 3
d 0z

— U - U - w

ot Ox oy

is the rate of change following the mean motion.



Reynolds Averaging

The mean equations thus have the form

Du 1 Op ou'v/  Ouv'  Ou'uw

- = =K | | | cha
dt po Ox Jv [ ox 0y 0z }
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Reynolds Averaging

The horizontal convergences of the turbulent fluxes can usually be neglected. This is

called the boundary-layer approximation. Also, W can be obtained from the equation for

mass conservation.

Du 1 Op  fp ou'w’ F
dt po Ox 0z
E— 1 Op I/
il op fu v -,
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Concept of Flux

pcp,w'd is the turbulent flux of sensible heat.
Units are:
kgm™2) (Jkgm? K1) (ms™1) K

= Js im2=Wm?*



Concept of Flux

pcp,w'd is the turbulent flux of sensible heat.
Units are:
kgm™2) (Jkgm? K1) (ms™1) K

=Js!m™? =Wm?

p Lw'q" is the turbulent flux of latent heat.
Units are:

(kgm™?) (Jkg™") (ms™") (kg kg™')

—Js!m™? =Wm?



Concept of Flux

pcp,w'd is the turbulent flux of sensible heat.
Units are:
kgm™2) (Jkgm? K1) (ms™1) K

=Js!m™? =Wm?

p Lw'q" is the turbulent flux of latent heat.
Units are:

(kgm™?) (Jkg™") (ms™") (kg kg™')

—Js!m™? =Wm?

pw’q’ is the turbulent flux of water vapor.

Units are:

(kgm™) (ms™") (kg kg™')

= kg st m=.



Concept of Flux

u'p’ is the flux of peanuts.

u 1S trips mto store per unit time.
p is kg of peanuts per trip.

Units are:

(trips s71) (kg trip~!) = kg s 1.

Example: Unload a truck with containers of peanuts.
Each trip between truck and store takes 30 seconds.
Each trip from truck to store carries 50 kg of peanuts.
Each trip from store to truck carries no peanuts.
What is flux of peanuts!?



Concept of Flux

u'p’ is the flux of peanuts.

u 1s trips into store per unit time.
p is kg of peanuts per trip.

Units are:

(trips s71) (kg trip~™!) = kg s~ 1.

Example: Unload a truck with containers of peanuts.
Each trip between truck and store takes 30 seconds.
Each trip from truck to store carries 50 kg of peanuts.
Each trip from store to truck carries no peanuts.

What is flux of peanuts!?

Answer: What are mean u and mean p during all trips!?
For each trip (into or out of) store:

U =u-u_meanand p’ = p - p_mean

u_mean =?

p_mean =



Concept of Flux

u'p’ is the flux of peanuts.

u 1s trips into store per unit time.
p is kg of peanuts per trip.

Units are:

(trips s71) (kg trip~™!) = kg s~ 1.

Example: Unload a truck with containers of peanuts.
Each trip between truck and store takes 30 seconds.
Each trip from truck to store carries 50 kg of peanuts.
Each trip from store to truck carries no peanuts.
What is flux of peanuts!?

Answer: What are mean u and mean p during all trips!?
For each trip (into or out of) store:

U =u-u_meanand p’ = p - p_mean

u mean =0

p_mean = 50/2 = 25 kg

u =1

p =



Concept of Flux

u'p’ is the flux of peanuts.

u 1s trips into store per unit time.
p is kg of peanuts per trip.

Units are:

(trips s71) (kg trip~™!) = kg s~ 1.

Example: Unload a truck with containers of peanuts.
Each trip between truck and store takes 30 seconds.
Each trip from truck to store carries 50 kg of peanuts.
Each trip from store to truck carries no peanuts.

What is flux of peanuts!?

Answer: What are mean u and mean p during all trips!?
For each trip (into or out of) store:

U =u-u_meanand p’ = p - p_mean

u mean =0

p_mean = 50/2 = 25 kg

into store: u’ = |/30; out of store u’ = -1/30

into store: p’ = 50-25 = 25; out of store p’ =0 - 25 =-25
flux due to trips into store = (u’p’)in = !

flux due to trips out of store = (u’p’)out = !



Concept of Flux

u'p’ is the flux of peanuts.

u 1s trips into store per unit time.
p is kg of peanuts per trip.

Units are:

(trips s71) (kg trip~™!) = kg s~ 1.

Example: Unload a truck with containers of peanuts.

Each trip between truck and store takes 30 seconds.

Each trip from truck to store carries 50 kg of peanuts.

Each trip from store to truck carries no peanuts.

What is flux of peanuts!?

Answer: What are mean u and mean p during all trips!?

For each trip (into or out of) store:

U =u-u_meanand p’ = p - p_mean

u mean =0

p_mean = 50/2 = 25 kg

into store: u’ = |/30; out of store u’ = -1/30

into store: p’ = 50-25 = 25; out of store p’ =0 - 25 =-25

flux due to trips into store = (u’p’)in = 1/30 * 25 = 5/6

flux due to trips out of store = (u’p’)out = -1/30 * (-25) = 5/6
average flux into store = 1/2 *(5/6 + 5/6) = 5/6 kg/s
common-sense flux into store per round trip: 50 kg per 60 s = 5/6 kg/s



