Surface layer wind profiles in neutral stratification

$$|\mathbf{V}| = \frac{u_*}{k} \log\left(\frac{z}{z_0}\right)$$

Vary friction velocity (m/s)

Vary roughness length (m)

$$\overline{u'w'} = -u_*^2 = -kzu_* \frac{d\mathbf{V}}{dz} = -ku_* \frac{d\mathbf{V}}{d\log z}$$

Atmospheric Sciences 5300 Surface Layer Wind Profiles

Find u_* and z_0 from the following wind profile measurements made during statically neutral conditions at sunset:

z (m)	$\bar{u} \; (\mathrm{m/s})$
0.5	2.8
2	4.2
8	5.6
32	7.0

To calculate u_* , apply the log wind profile

$$u = u_*/k \log(z/z_0),$$

at any two heights z_1 and z_2 to obtain

$$u(z_2) - u(z_1) = u_*/k \log(z_2/z_1),$$

then solve for u_* :

$$u_* = k \frac{u(z_2) - u(z_1)}{\log(z_2/z_1)}.$$

To calculate z_0 , solve the log wind profile at any height z for z_0 :

$$z_0 = z \exp(-ku(z)/u_*).$$

The graphical solution method is to plot the wind profile u versus $\log z$, then extrapolate the profile to u = 0. The height at which $u = \text{is } z_0$.

Atmospheric Sciences 5300 Surface Layer Wind Profiles

Find u_* and z_0 from the following wind profile measurements made during statically neutral conditions at sunset:

z (m)	$\bar{u} \; (\mathrm{m/s})$
0.5	2.8
2	4.2
8	5.6
32	7.0

To calculate u_* , apply the log wind profile

$$u = u_*/k \log(z/z_0),$$

at any two heights z_1 and z_2 to obtain

$$u(z_2) - u(z_1) = u_*/k \log(z_2/z_1),$$

then solve for u_* :

$$u_* = k \frac{u(z_2) - u(z_1)}{\log(z_2/z_1)}.$$

To calculate z_0 , solve the log wind profile at any height z for z_0 :

$$z_0 = z \exp(-ku(z)/u_*).$$

The graphical solution method is to plot the wind profile u versus $\log z$, then extrapolate the profile to u=0. The height at which $u=\operatorname{is} z_0$.

Answer:

$$u_* = 0.4 \text{ m/s}, z_0 = 0.03 \text{ m}.$$

Boulder, Colorado, 82-m meteorological tower

