Meteorology 3510

Example Problems: Thermodynamic Processes

1. A parcel of dry air rises and expands adiabatically from $p=p_{1}$ where $T=T_{1}$ to $p=p_{2}$. What is $T_{2}=T\left(p_{2}\right)$? What is θ ?
Solution:

$$
T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{R / c_{p}}, \quad \theta=T_{1}\left(\frac{p_{0}}{p_{1}}\right)^{R / c_{p}}
$$

where $p_{0}=1000 \mathrm{hPa}$.
2. A parcel of dry air at $p=600 \mathrm{mb}$ has $T=-10^{\circ} \mathrm{C}$.
(a) The parcel descends to 800 mb dry adiabatically; calculate its temperature there.
(b) The parcel acends to 400 mb dry adiabatically; calculate its temperature there.
(c) Calculate the parcel's potential temperature.

Answers: (a) 285.5 K, (b) 234.2 K, (c) 304.3 K.
3. Near-surface air flows into a hurricane over a sea surface with uniform temperature.
(a) If the air temperature remains $28^{\circ} \mathrm{C}$ and the pressure decreases from 1020 to 920 hPa , what is the increase in potential temperature?
(b) How much energy is transferred to the air by heating during this process?

Answers: (a) 9.0 K , (b) $8.9 \mathrm{~kJ} \mathrm{~kg}^{-1}$.
4. A jet airplane cruises in the lower stratosphere where the air pressure is 150 mb and the temperature is $-60^{\circ} \mathrm{C}$. The ventilation system brings outside air into the cabin where the pressure is 700 mb .
(a) The air is first adiabatically compressed to cabin pressure. What is the air's temperature after this step?
(b) In order to reach the cabin temperature of $20^{\circ} \mathrm{C}$, how much (isobaric) heating per unit mass is required after the air has been compressed to cabin pressure?

Answers: (a) 330.8 K or $57.7^{\circ} \mathrm{C}$, (b) $-38.0 \mathrm{~kJ} \mathrm{~kg}^{-1}$.
5. A radiosonde measures T, p, and RH. How can you obtain T_{d} and w from these quantities (mathematically)?
Solution: The dew-point temperature T_{d} may be calculated from

$$
T_{d}=\frac{T}{1-\frac{T R_{v}}{L_{e}} \ln r},
$$

where $R_{v} \equiv R^{*} / m_{v}=R / \epsilon, L_{e}$ is the latent heat of evaporation, and r is the relative humidity.
The mixing ratio w may be obtained from $e=r e_{s}(T)$ and

$$
w=\epsilon \frac{e}{p-e} \approx \epsilon \frac{e}{p} .
$$

6. A radiosonde measures $T=280 \mathrm{~K}, p=900 \mathrm{mb}$, and $r=0.5$. Calculate T_{d} and w from these quantities. You can read $e_{s}(T)$ from the plots below.
Answers: $T_{d}=270.3 \mathrm{~K}, w=3.5 \mathrm{~g} \mathrm{~kg}^{-1}$.
7. How much is a kilogram of air cooled by isobarically evaporating 5 g of water into it? Solution: $d h=-L d w=c_{p} d T$ so

$$
\Delta T=-\frac{L}{c_{p}} \Delta w=\frac{2.5 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}}{1004 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}} 5 \times 10^{-3} \mathrm{~kg} \mathrm{~kg}^{-1}=12.45 \mathrm{~K}
$$

