Atmospheric Sciences 5300

Exercise #6

Due Friday, October 8, 2021

This exercise is about dry microburst downdrafts. Assume that the environment below the LCL is well-mixed (constant θ and constant w).

Please use the tables (next page) for your numerical answers. Please submit a skew-T log p diagram for each problem.

- 1. Use the same procedure as we used in class to determine the downdraft speed at the surface (where p=840 mb) for a parcel that descends from the environmental LCL (at p=590 mb, $T=1^{\circ}$ C) and remains saturated due to rain evaporation until either 1, 2, or 3 g kg⁻¹ of rain have evaporated into it, then descends dry adiabatically to the surface. For each case:
 - (a) What is the SEL (sinking evaporation level)?
 - (b) What are the parcel's mixing ratio, T, T_d , and RH at the surface?
 - (c) What is the environment's mixing ratio, T, T_d , and RH at the surface?
 - (d) What is the downdraft CAPE for the parcel?
 - (e) What is the downdraft speed at the surface?

Answers for evaporation of 1 g kg⁻¹ of rain (using $T - T_e = -3$ °C at the SEL):

- (a) 630 mb, (b) $T = 27^{\circ}\text{C}$, RH = 29%, (c) $T = 30^{\circ}\text{C}$, RH = 22%, (d) 276 J kg⁻¹ (e) 23.5 m s⁻¹.
- 2. For the same environment as Problem 1, the parcel properties at the surface are T = 24°C and $T_d = 10.5$ °C? For this case,
 - (a) What are the parcel's mixing ratio and RH at the surface?
 - (b) What is the SEL (sinking evaporation level)?
 - (c) How much rain was evaporated into the parcel? (d) What is the downdraft CAPE for the parcel?
 - (e) What is the downdraft speed at the surface?
- 3. This is like Problem 2, but the environment properties at the surface are p = 800 mb, T = 30°C, and $T_d = 3$ °C, and the parcel properties at the surface are T = 25°C and $T_d = 7$ °C? For this case,
 - (a) What are the parcel's mixing ratio and RH at the surface?
 - (b) What is the SEL (sinking evaporation level)?
 - (c) How much rain was evaporated into the parcel? (d) What is the downdraft CAPE for the parcel?

(e) What is the downdraft speed at the surface?

Problem 1

evaporated rain (g/kg)				
SEL (mb)				
DCAPE (J/kg)				
parcel at surface				
w (g/kg)				
T (°C)				
T_d (°C)				
RH (%)				
vertical velocity (m/s)				
environment at surface				
w (g/kg)				
T (°C)				
T_d (°C)				
RH (%)				

Problem 2

parcel at surface		

Problem 3

evaporated rain (g/kg)		
SEL (mb)		
DCAPE (J/kg)		
parcel at surface		
w (g/kg)		
T (°C)		
T_d (°C)		
RH (%)		
vertical velocity (m/s)		