Atmospheric Sciences 5300 Exercise #2 Due Monday, September 12, 2022

This exercise deals with dry adiabatic processes and the skew T-log p chart.

- To help you get familiar with SkewT/Log-P Diagram, you are strongly encouraged to use the Skew-T Mastery program. To get started, go to http://www.meted. ucar.edu/mesoprim/skewt (or use the Skew-T Mastery link on the class web page). You need to register first. Please enter steve.krueger@utah.edu for the supervisor/instructor's E-mail. After you register, work through UNIT 1 - Skew-T Description, including Introduction, Lines on the skew-T, and Sounding Data (Temperature/Dewpoint only), and UNIT-2 Parameters, including the following material in the Parameters subsection (all of the items under Moisture/Humidity and the items down to Lifting Condensation Level under Temperatures/Levels). There is no quiz to take at this time.
- 2. Consider a parcel that ascends dry adiabatically from p = 1000 mb, where $T = 20^{\circ}$ C and relative humidity = 50%, to its *saturation pressure* (also known as *lifting condensation level*, or LCL.)

Use the skew T-log p chart and calculations (but only as needed) to obtain the quantities listed below for the parcel. Tabulate and plot the quantities at 25-mb intervals on the first accompanying table and on a graph. Also plot the quantities at the LCL on the graph. Use colored pencils (optional) as indicated to plot the variables.

(a) Relative humidity (black).

(b) Vapor pressure, e (red); saturation vapor pressure, e_s (blue).

(c) Mixing ratio, w (red); saturation mixing ratio, w_s (blue).

(d) Potential temperature, θ (green); temperature, T (red); dewpoint temperature, T_d (blue).

- 3. Use the skew T-log p chart and calculations (but only as needed) to obtain the quantities listed below for a parcel that ascends adiabatically from p = 1000 mb, where $T = 10^{\circ}$ C and relative humidity = 50%, to its LCL. Tabulate and plot the quantities at 25-mb intervals on the second accompanying table and on a new graph. Also plot the quantities at the LCL on the graph.
 - (a) Relative humidity.
 - (b) e (red), e_s (blue).
 - (c) w (red), w_s (blue).
 - (d) θ (green), T (red), T_d (blue).

p	RH	e	e_s	w	w_s	θ	T	T_d	T_v
(mb)	(%)	(mb)	(mb)	(g/kg)	(g/kg)	(K)	(K)	(K)	(K)
700									
725									
750									
775									
800									
825									
850									
875									
900									
925									
950									
975									
1000									

4. For the parcel described in Problem 3, determine its saturation pressure p_s (or LCL) and saturation temperature T_s .

p	RH	e	e_s	w	w_s	θ	T	T_d	T_v
(mb)	(%)	(mb)	(mb)	(g/kg)	(g/kg)	(K)	(K)	(K)	(K)
700									
725									
750									
775									
800									
825									
850									
875									
900									
925									
950									
975									
1000									