Atmospheric Sciences 5300 Exercise #4 Due Friday, September 25, 2020

This exercise deals with moist (saturated) adiabatic processes and the skew T-log p chart: calculating liquid water and total water mixing ratios.

1. A parcel ascends a diabatically over a mountain range starting from 950 mb, where $T = 23^{\circ}\mathrm{C}$ K and mixing ratio = 12 g kg⁻¹, to 550 mb. Then it descends a diabatically back down to 950 mb.

(a) Complete the following table of parcel properties. The parcel ascends from time 1 to time 4, then descends. from time 4 to time 6.

time (arbitrary units)	1	2	3	4	5	6
pressure (mb)	950		675	550		950
temperature $(T, °C)$	23					
saturation mixing ratio $(w_s, g/kg)$		12			8	
water vapor mixing ratio $(w, g/kg)$	12	12			8	8
liquid water mixing ratio $(w_l, g/kg)$	0					
total water mixing ratio $(w + w_l, g/kg)$	12		10	8	8	
Relative humidity (percent)		100	100	100	100	

(b) Plot the parcel's temperature and dewpoint temperature versus pressure during ascent and descent on a skew-T log p diagram. (For example, http://www.inscc.utah.edu/~krueger/5300/skew-T-400-labels.pdf) Label each point with its corresponding time.