Meteorology 3510 Midterm Exam April 12, 2007 100 points

You may use your skew- $T \log p$ diagram for any problem for which it is applicable. You may be specifically asked to use it for some problems. A list of physical constants and mathematical relations for cosine and sine functions follows the problems.

1. (30 points) A parcel ascends adiabatically over a mountain range starting from 1000 mb, where $T = 30^{\circ}$ C K and mixing ratio = 20 g kg⁻¹, to 550 mb. Then it descends adiabatically back down to 1000 mb.

(a) Complete the following table of parcel properties. The parcel ascends from time 1 to time 4, then descends. from time 4 to time 6.

time (arbitrary units)	1	2	3	4	5	6
pressure (mb)	1000	930	685	550	685	1000
temperature $(T, \circ C)$	30	23.5	13	5	13	46
saturation mixing ratio $(w_s, g/kg)$	27.5	20	14	10	14	70
water vapor mixing ratio $(w, g/kg)$	20	20	14	10	14	14
liquid water mixing ratio $(w_l, g/kg)$	0	0	3	4	0	0
total water mixing ratio $(w + w_l, g/kg)$	20	20	17	14	14	14
Relative humidity (percent)	73	100	100	100	100	20

(b) Plot the parcel's temperature and dewpoint temperature versus pressure during ascent and descent on the accompanying skew- $T \log p$ diagram. Label each point with its corresponding time.

(1) $T_d = 25^{\circ}$ C (2) LCL = 930 mb (2)–(5) are on the saturation adiabat labeled 26 (wet-bulb potential temperature) (5) SEL = 685 mb (6) $T_d = 19^{\circ}$ C