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5.5 Changes of phase and latent heats

In the atmosphere, liquid water and water vapor can coexist in
thermodynamic equilibrium, as can ice and water vapor.

• Vapor, liquid, and solid are called phases.

• The following phase changes of water substance occur in the
atmosphere: evaporation, condensation, sublimation,
deposition, melting, and freezing.

– Evaporation occurs when liquid water changes to water
vapor, while condensation is the opposite.

– Sublimation occurs when ice changes to water vapor, while
deposition is the opposite.

– Melting occurs when ice changes to liquid water, while
freezing is the opposite.

• Both condensation and freezing require nuclei to initiate the
phase change.

• If su�cient nuclei are not present, supersaturation of water
vapor, or supercooling of liquid water, may occur.

• Cloud condensation nuclei are usually abundant, so
supersaturation is negligible in clouds without ice.

• Ice nuclei are not abundant, so supercooling of liquid water is
typical.
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Heating or cooling of the environment occurs during phase changes,
even though the phase change is isothermal.

• The energy transferred is called the latent heat.

• Cooling occurs during evaporation, sublimation, and melting.

• Heating occurs during condensation, deposition, and freezing.

At 0�C

• the latent heat of evaporation is Le = 2.5⇥ 106 J kg�1,

• the latent heat of melting is Lm = 0.334⇥ 106 J kg�1, and

• the latent heat of sublimation is Ls = 2.834⇥ 106 J kg�1.
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5.6 Adiabatic processes of saturated air

When condensation occurs during ascent, the latent heat that is
released significantly reduces the rate of temperature decrease due to
adiabatic expansion. Consider two cases:

All condensed water remains suspended. This is called a
moist adiabatic or saturation adiabatic process, and is
reversible.

All condensed water falls out of the parcel immediately.
This is called a pseudo-adiabatic process, and is
irreversible.

The real situation lies between these two extremes.

Note that the rate of cooling in a pseudo-adiabatic process is
essentially equal to that in a truly moist adiabatic one.
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We will now consider a pseudo-adiabatic process in which there is
saturation but not supersaturation.

The amount of water vapor condensed is then �dws and the latent
heating is �Ldws.

(Here we use L = Le for simplicity.)

The first law for the mixture of dry air and water vapor is

�Ldws = cp dT �RT
dp

p
. (29)

Since ws and es are known functions of T and p, this is a di↵erential
relationship between T and p during a pseudo-adiabatic process.

We will use the definition of potential temperature given by

T

✓
=

✓
p

p0

◆

.

to write another form of the first law. Take the logarithm to get

ln
T

✓
=

R

cp
ln

p

p0
.

Di↵erentiate this to obtain

d lnT � d ln ✓ =
R

cp
(d ln p� d ln p0),

which becomes
dT

T
� d✓

✓
=

R

cp

dp

p
.

Rearrange this to get

cp
d✓

✓
= cp

dT

T
�R

dp

p
. (30)
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By comparing (29) divided by T and (30), we see that the first law of

thermodynamics for a pseudo-adiabatic process is

�L
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T
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d✓

✓
.

It can be shown that (see Wallace and Hobbs, Second Edition,
Problem 3.52)
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,
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�Ld

⇣
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⌘
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Integrate this from the original, saturated state (T,ws(T, p), ✓(T, p))
to a state where ws = 0 and ✓ = ✓e:
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to get
Lws
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= ln(✓e/✓),

then exponentiate and rearrange to obtain

✓ = ✓e exp(�Lws/cpT ).

This describes a pseudo-adiabat which is characterized by ✓e, the
equivalent potential temperature:

✓e = ✓ exp(Lws/cpT ). (31)
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5.8 Skew T -log p diagram

Figure 7: Depiction of thermodynamic variables and processes on a
skew T -log p diagram (Bohren and Albrecht 1998).
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5.7 More moisture variables

The thermodynamic processes that define the following four variables
are easily visualized on a a skew T -log p diagram, as shown in Fig. 7.

Equivalent potential temperature, ✓e The potential temperature
of a parcel that has ascended pseudo-adiabatically until all
water vapor has been condensed. Eq. (31):

✓e = ✓ exp(Lws/cpT ) ⇡ ✓ + Lws/cp.

Equivalent temperature, Te The temperature of a parcel that has
first ascended pseudo-adiabatically until all water vapor has
been condensed, then descended (dry adiabatically) to its
original pressure:

Te = ✓e

✓
p

p0

◆R/cp

= T exp(Lws/cpT ) ⇡ T + Lws/cp.

Wet-bulb temperature, Tw (i) The temperature of a parcel that
has been isobarically cooled by evaporation until saturated.
(ii) The temperature of a parcel that has first ascended dry
adiabatically to its LCL, then descended moist (saturated)
adiabatically to its original pressure.

Wet-bulb potential temperature, ✓w (i) The temperature of a
parcel that has first been isobarically cooled by evaporation
until saturated, then descended moist (saturated) adiabatically
to 1000 hPa.
(ii) The temperature of a parcel that has first ascended dry
adiabatically to its LCL, then descended moist (saturated)
adiabatically to 1000 hPa.
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Liquid water mixing ratio, wl The mass of liquid water
(droplets) per unit mass of dry air.

Total water mixing ratio, wt The mass of water vapor plus liquid
water (droplets) per unit mass of dry air: wt = w + wl.

• During a reversible process, the total water mixing ratio

(wt = w + wl) in a parcel remains constant.

• During a pseudo-adiabatic process, any condensed water
immediately falls out of the parcel (as precipitation) so that the
liquid water mixing ratio (wl) is always zero.

• Naturally occurring processes are usually neither exactly
reversible nor pseudo-adiabatic, but somewhere in between:

Some, but not all, of the condensed water falls out of
the parcel as precipitation so that the liquid water
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