## Thermodynamics Notes Sections 5.5-5.7

(mostly from Thermo_for_slides.tex)

### 5.5 Changes of phase and latent heats

In the atmosphere, liquid water and water vapor can coexist in thermodynamic equilibrium, as can ice and water vapor.

- Vapor, liquid, and solid are called phases.
- The following phase changes of water substance occur in the atmosphere: evaporation, condensation, sublimation, deposition, melting, and freezing.
- Evaporation occurs when liquid water changes to water vapor, while condensation is the opposite.
- Sublimation occurs when ice changes to water vapor, while deposition is the opposite.
- Melting occurs when ice changes to liquid water, while freezing is the opposite.
- Both condensation and freezing require nuclei to initiate the phase change.
- If sufficient nuclei are not present, supersaturation of water vapor, or supercooling of liquid water, may occur.
- Cloud condensation nuclei are usually abundant, so supersaturation is negligible in clouds without ice.
- Ice nuclei are not abundant, so supercooling of liquid water is typical.

Heating or cooling of the environment occurs during phase changes, even though the phase change is isothermal.

- The energy transferred is called the latent heat.
- Cooling occurs during evaporation, sublimation, and melting.
- Heating occurs during condensation, deposition, and freezing.

At $0^{\circ} \mathrm{C}$

- the latent heat of evaporation is $L_{e}=2.5 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$,
- the latent heat of melting is $L_{m}=0.334 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$, and
- the latent heat of sublimation is $L_{s}=2.834 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$.


### 5.6 Adiabatic processes of saturated air

When condensation occurs during ascent, the latent heat that is released significantly reduces the rate of temperature decrease due to adiabatic expansion. Consider two cases:

All condensed water remains suspended. This is called a moist adiabatic or saturation adiabatic process, and is reversible.

All condensed water falls out of the parcel immediately. This is called a pseudo-adiabatic process, and is irreversible.

The real situation lies between these two extremes.
Note that the rate of cooling in a pseudo-adiabatic process is essentially equal to that in a truly moist adiabatic one.

We will now consider a pseudo-adiabatic process in which there is saturation but not supersaturation.

The amount of water vapor condensed is then $-d w_{s}$ and the latent heating is $-L d w_{s}$. $\mathrm{kg} / \mathrm{kg}$ (Here we use $L=L_{e}$ for simplicity.)

The first law for the mixture of dry air and water vapor is energy conservation
L/cp = 2.5e6 J/kg /1e3 J/kg/K
$L d w=c_{p} d p^{2.5 e 3 \mathrm{Kkgkg}=2.5 \mathrm{~K} / \mathrm{g} / \mathrm{kg}}$
$-L d w_{s}=\underset{\text { enthalpy }}{c_{p} d T-R T \frac{p}{p} .}$
Since $w_{s}$ and $e_{s}$ are known functions of $T$ and $p$, this is a differential
relationship between $T$ and $p$ during a pseudo-adiabatic process.

## Saturated Adiabatic Ascent

I. Adiabatic. No phase changes involving cloud droplets ( $\mathrm{C}=0$ ):
$\theta^{n}, w^{n} \rightarrow \theta^{*}, w^{*}$
2. Isobaric. Only phase changes involving cloud droplets operate (|C| > $0)$ :
$\theta^{*}, w^{*} \rightarrow \theta^{n+1}, w^{n+1}$


## Saturated Adiabatic Ascent

2. Isobaric. Only phase changes involving cloud droplets operate (|C| > 0 ):

$$
\theta^{n+1}, w^{n+1}=
$$

$\left(\theta^{*}+\Delta \theta, w^{*}+\Delta w\right)$
Conservation of energy $p^{n}$
(First Law of Thermodynamics):
$0=c_{p} \pi \Delta \theta+L \Delta w$ or
$0=c_{p} \Delta T+L \Delta w$
Adjusted state is exactly saturated:
$w^{n+1}=w_{s}\left(\pi \theta^{n+1}, p^{n+1}\right)$ or
$w^{n+1}=w_{s}\left(T^{n+1}, p^{n+1}\right)$ We will use the definition of potential temperature given by

$$
\frac{T}{\theta}=\left(\frac{p}{p_{0}}\right)^{\kappa} .
$$

to write another form of the first law. Take the logarithm to get
$\log (x / y)=\log x-\log y$
$\log x^{\wedge} a=a \log x$

$$
\ln \frac{T}{\theta}=\frac{R}{c_{p}} \ln \frac{p}{p_{0}}
$$

Differentiate this to obtain

$$
\begin{aligned}
& d(\log y) d y=1 / y \\
& d(\log y)=d y / y
\end{aligned} \quad d \ln T-d \ln \theta=\frac{R}{c_{p}}\left(d \ln p-d \ln p_{0}\right),
$$

which becomes

$$
\frac{d T}{T}-\frac{d \theta}{\theta}=\frac{R}{c_{p}} \frac{d p}{p}
$$

Rearrange this to get

$$
\begin{equation*}
c_{p} \frac{d \theta}{\theta}=c_{p} \frac{d T}{T}-R \frac{d p}{p} . \tag{30}
\end{equation*}
$$

Recall First Law.

$$
\begin{gather*}
-\frac{L d w_{s}}{T}=\frac{c_{p} d T}{T}-\frac{R T}{T} \frac{d p}{p} .  \tag{29}\\
c_{p} \frac{d \theta}{\theta}=c_{p} \frac{d T}{T}-R \frac{d p}{p} .
\end{gather*}
$$

By comparing (29) divided by $T$ and (30), we see that the first law of thermodynamics for a pseudo-adiabatic process is

$$
-L \frac{d w_{s}}{T}=c_{p} \frac{d \theta}{\theta} .
$$

It can be shown that (see Wallace and Hobbs, Second Edition, Problem 3.52)

SO

$$
d\left(\frac{w_{s}}{T}\right) \approx \frac{d w_{s}}{T},- \text { Ws dT/T^2 }
$$

neglected term

$$
-L d\left(\frac{w_{s}}{T}\right) \approx c_{p} \frac{d \theta}{\theta}=c_{p} d \ln \theta
$$

$$
-L d\left(\frac{w_{s}}{T}\right) \approx c_{p} \frac{d \theta}{\theta}=c_{p} d \ln \theta
$$

Integrate this from the original, saturated state $\left(T, w_{s}(T, p), \theta(T, p)\right)$ to a state where $w_{s}=0$ and $\theta=\theta_{e}$ :

$$
-\int_{w_{s} / T}^{0} L d\left(\frac{w_{s}}{T}\right) \approx \int_{\theta}^{\theta_{e}} c_{p} d \ln \theta
$$

to get

$$
\frac{L w_{s}}{c_{p} T}=\ln \left(\theta_{e} / \theta\right)
$$

$$
-L d\left(\frac{w_{s}}{T}\right) \approx c_{p} \frac{d \theta}{\theta}=c_{p} d \ln \theta
$$

Integrate this from the original, saturated state $\left(T, w_{s}(T, p), \theta(T, p)\right)$ to a state where $w_{s}=0$ and $\theta=\theta_{e}$ :

$$
-\int_{w_{s} / T}^{0} L d\left(\frac{w_{s}}{T}\right) \approx \int_{\theta}^{\theta_{e}} c_{p} d \ln \theta
$$

to get

$$
\frac{L w_{s}}{c_{p} T}=\ln \left(\theta_{e} / \theta\right), \begin{aligned}
& \text { This describes a saturated adiabat, } \\
& \text { which is characterized by theta } e, \\
& \text { which is a constant for each such } \\
& \text { adiabat. }
\end{aligned}
$$

then exponentiate and rearrange to obtain

$$
\theta=\theta_{e} \exp \left(-L w_{s} / c_{p} T\right) . \begin{aligned}
& \text { a function of } T \text { and } w s\left(T_{,} p\right) \\
& \text { so it can be plotted on a } \\
& \text { skew-T diagram }
\end{aligned}
$$

This describes a pseudo-adiabat which is characterized by $\theta_{e}$, the equivalent potential temperature:

$$
\begin{equation*}
\theta_{e}=\theta \exp \left(L w_{s} / c_{p} T\right) \tag{31}
\end{equation*}
$$

## SKIP to slide 23

(liquid water content)

- $w_{s}=0$ and $\theta=\theta_{e}$
$0_{\text {e }}, \theta_{w}$ constant

1000 mb




### 5.7 More moisture variables

The thermodynamic processes that define the following four variables are easily visualized on a a skew $T$-log $p$ diagram, as shown in Fig. 7.

Equivalent potential temperature, $\theta_{e}$ The potential temperature of a parcel that has ascended pseudo-adiabatically until all water vapor has been condensed. Eq. (31):

$$
\theta_{e}=\theta \exp \left(L w_{s} / c_{p} T\right) \approx \theta+L w_{s} / c_{p}
$$

### 5.7 More moisture variables

The thermodynamic processes that define the following four variables are easily visualized on a a skew $T$-log $p$ diagram, as shown in Fig. 7.

Equivalent potential temperature, $\theta_{e}$ The potential temperature of a parcel that has ascended pseudo-adiabatically until all water vapor has been condensed. Eq. (31):

$$
\theta_{e}=\theta \exp \left(L w_{s} / c_{p} T\right) \approx \theta+L w_{s} / c_{p}
$$

Equivalent temperature, $T_{e}$ The temperature of a parcel that has first ascended pseudo-adiabatically until all water vapor has been condensed, then descended (dry adiabatically) to its original pressure:

$$
T_{e}=\theta_{e}\left(\frac{p}{p_{0}}\right)^{R / c_{p}}=T \exp \left(L w_{s} / c_{p} T\right) \approx T+L w_{s} / c_{p}
$$

Wet-bulb temperature, $T_{w}$ (i) The temperature of a parcel that has been isobarically cooled by evaporation until saturated. (ii) The temperature of a parcel that has first ascended dry adiabatically to its LCL, then descended moist (saturated) adiabatically to its original pressure.



Wet-bulb temperature, $T_{w}$ (i) The temperature of a parcel that has been isobarically cooled by evaporation until saturated. (ii) The temperature of a parcel that has first ascended dry adiabatically to its LCL, then descended moist (saturated) adiabatically to its original pressure.

Wet-bulb potential temperature, $\theta_{w}$ (i) The temperature of a parcel that has first been isobarically cooled by evaporation until saturated, then descended moist (saturated) adiabatically to 1000 hPa .
(ii) The temperature of a parcel that has first ascended dry adiabatically to its LCL, then descended moist (saturated) adiabatically to 1000 hPa .


Liquid water mixing ratio, $w_{l}$ The mass of liquid water (droplets) per unit mass of dry air.

Liquid water mixing ratio, $w_{l}$ The mass of liquid water (droplets) per unit mass of dry air.

Total water mixing ratio, $w_{t}$ The mass of water vapor plus liquid water (droplets) per unit mass of dry air: $w_{t}=w+w_{l}$.

Liquid water mixing ratio, $w_{l}$ The mass of liquid water (droplets) per unit mass of dry air.

Total water mixing ratio, $w_{t}$ The mass of water vapor plus liquid water (droplets) per unit mass of dry air: $w_{t}=w+w_{l}$.

- During a reversible process, the total water mixing ratio $\left(w_{t}=w+w_{l}\right)$ in a parcel remains constant.
- During a pseudo-adiabatic process, any condensed water immediately falls out of the parcel (as precipitation) so that the liquid water mixing ratio $\left(w_{l}\right)$ is always zero.


## Saturated Adiabatic Ascent



- Naturally occurring processes are usually neither exactly reversible nor pseudo-adiabatic, but somewhere in between:

Some, but not all, of the condensed water falls out of the parcel as precipitation so that the liquid water mixing ratio may be greater than zero, but the total water mixing ratio is reduced by the loss due to precipitation.

- Naturally occurring processes are usually neither exactly reversible nor pseudo-adiabatic, but somewhere in between:

Some, but not all, of the condensed water falls out of the parcel as precipitation so that the liquid water mixing ratio may be greater than zero, but the total water mixing ratio is reduced by the loss due to precipitation.

- Given the total water mixing ratio, one can then determine the remaining unknown mixing ratios:
- We will assume that the parcel is either exactly saturated, or unsaturated with no liquid water.
- If a parcel is exactly saturated: $w=w_{s}(T, p)$, so $w_{l}=w_{t}-w_{s}(T, p)$.
- If a parcel is unsaturated with no liquid water: $w_{l}=0$, so $w=w_{t}$.

