Precipitation Rate

Air must ascend to produce precipitation.

Global Precipitation: Seasonal Variation

Average July GPCP Precipitation (mm/day) for 1988-96 90N-30N-EQ-305-60S 120E 6ÓE 120W BÓW 180 14 10 11 12 13

What meteorological processes lead to ascent and precipitation in different regions and seasons?

Lifting water with a water wheel

Water vapor condenses during ascent

cloud-top temperature, T_t cloud-top pressure, p_t

contant vertical mass flux, M (air density x air vertical velocity)

cloud-base temperature, T_b cloud-base pressure, p_b

cloud-base precipitation rate, P

cloud-top pressure, pt

contant vertical mass flux, M (air density x air vertical velocity)

cloud-base temperature, T_b cloud-base pressure, pb

cloud-base precipitation rate, P

cloud-top temperature, T_t

- From these quantities alone, we can estimate the cloud-base precipitation rate.
- Assume precipitation immediately forms from condensed water vapor.
- Then cloud-base precipitation rate = vertically integrated condensation rate.
- The latter is the condensation per unit mass of air during ascent from cloud base to cloud top x vertical mass flux:

 $P = \left[w_s(T_b, p_b) - w_s(T_t, p_t)\right] M,$

 $w_s(T,p)$ is the saturation mixing ratio

Cloud Type	Sc	Cu con	Cb	Ns	Ns	Ns
					(Fall)	(Winter)
cloud-base temperature $(T_b, ^{\circ}C)$	20	20	20	20	0	-10
cloud-base pressure (p_b, hPa)	950	950	950	950	800	800
cloud-top pressure (p_t, hPa)	900	750	300	300	300	300
mass flux $(M, \text{ kg m}^{-2} \text{ s}^{-1})$	0.5	2	8	0.1	0.2	0.2
cloud-base saturation						
mixing ratio $(w_{s,b}, g/kg)$						
cloud-top saturation						
mixing ratio $(w_{s,b}, g/kg)$						
cloud-base precipitation rate						
$(P, \rm{mm} \rm{hr}^{-1})$						
maximum cloud-base precipitation						
rate $(P_{\rm max}, {\rm mm} {\rm hr}^{-1})$						

Cloud Type	Sc	Cu con	Cb	Ns	Ns	Ns
					(Fall)	(Winter)
cloud-base temperature $(T_b, ^{\circ}C)$	20	20	20	20	0	-10
cloud-base pressure (p_b, hPa)	950	950	950	950	800	800
cloud-top pressure (p_t, hPa)	900	750	300	300	300	300
mass flux $(M, \text{ kg m}^{-2} \text{ s}^{-1})$	0.5	2	8	0.1	0.2	0.2
cloud-base saturation	16	16	16	16	4.8	2.2
mixing ratio $(w_{s,b}, g/kg)$						
cloud-top saturation	15	11.5	0.8	0.8	0.05	0
mixing ratio $(w_{s,b}, g/kg)$						
cloud-base precipitation rate	1.8	32	440	5.5	3.5	1.6
$ (P, \operatorname{mm} \operatorname{hr}^{-1}) $						
maximum cloud-base precipitation	29	115	460	5.8	3.5	1.6
rate $(P_{\rm max}, {\rm mm} {\rm hr}^{-1})$						

