PBL momentum Eqs. (Holton 5.3)
Bil. approx. + neglect of viscosity:

$$\frac{\overline{D}\overline{u}}{Dt} = -\frac{1}{Po}\frac{\partial\overline{p}}{\partial x} + f\overline{v} - \frac{\partial\overline{u}w'}{\partial z}$$
(1)

$$\frac{\overline{D}\overline{v}}{Dt} = -\frac{1}{Po}\frac{\partial\overline{p}}{\partial x} - f\overline{u} - \frac{\partial\overline{v}w'}{\partial z}$$
(2)
Unknown 5: $\overline{u'w'}, \overline{v'w'}$
(Assume $\partial\overline{p}Dx, \partial\overline{p}/\partial y + nown.$)

-1 2

 $\frac{66}{1}$

Use bulk aerodynamic formula (ebsorvationally based): $(\overline{u'w'})_{s} = -Cd |V| \overline{u}$ (5) $(v'w')_{s} = -cd[V]\overline{v}$ (SLIP) (6) Cd: drag coeff. (non-dim.) ~ 1.5×10-3 over oceans; much langer over rough ground. Can now integrate (3), (4) woing (5), (6): From surface to z=h: $f(\overline{v}-\overline{v}_g) = -(\overline{u}\overline{w})_s = cd[\overline{V}]\overline{u}/h(7)$ $-f(\overline{n}-\overline{n}g) = -(\overline{v'w'})_{s} = ca[\overline{V}]\overline{v}/h \quad (8)$ (skip)

choose axès so vg = 0 =)

$$\overline{u} = \overline{u_g} - \chi_s |\overline{v}| \overline{v}$$

where $\chi_s \equiv cd/(fh)$. wind speed $|V| = (\bar{u}^2 + \bar{v}^2)^2$ is low

than (Vg) = ug, and vector balance

gives cross isoban flow toward lowpr.

Table 9.2 The Davenport classification, where z_o is aerodynamic roughness length and C_{DN} is the corresponding drag coefficient for neutral static stability^{*a*}

z ₀ (m)	Classification	Landscape	C _{DN}
0.0002	Sea	Calm sea, paved areas, snow-covered flat plain, tide flat, smooth desert.	0.0014
0.005	Smooth	Beaches, pack ice, morass, snow-covered fields.	0.0028
0.03	Open	Grass prairie or farm fields, tundra, airports, heather.	0.0047
0.1	Roughly open	Cultivated area with low crops and occasional obstacles (single bushes).	0.0075
0.25	Rough	High crops, crops of varied height, scattered obstacles such as trees or hedgerows, vineyards.	0.012
0.5	Very rough	Mixed farm fields and forest clumps, orchards, scattered buildings.	0.018
1.0	Closed	Regular coverage with large size obstacles with open spaces roughly equal to obstacle heights, suburban houses, villages, mature forests.	0.030
≥2	Chaotic	Centers of large towns and cities, irregular forests with scattered clearings.	0.062

^a From Preprints 12th Amer. Meteorol. Soc. Symposium on Applied Climatology, 2000, pp. 96–99.

EX: $\overline{u_g} = 10 \ mls$ $\overline{u} = 8,28 \ mls$ $K_s = .05 \ m^{-1}s$ $\overline{v} = 3,77 \ mls$ [V] = 2.10 m) 5. What is cross-isobar angle? work is done by PGF to balance KE los due to friction 4 Balonce p-20p p-Sp CD \mathcal{V}

F

mixed layer winds (geostrophic: no drag) and geopotential

mixed layer winds (with drag) and geopotential

vertical velocity (mm/s) and geostrophic departure

