Boundary Layer Meteorology ATMOS 5220/6220

09.13.2011

Surface roughness and the logarithmic sublayer

Logarithmic wind profile

- friction velocity u*
- roughness length z₀
- how do they affect the wind profile?

Aerodynamic bulk formula

- •drag coefficient over land
- •drag coefficient over water

Turbulence scales

- velocity scales (u*, w*)
- length scales (z, z_i , z_0 , L)
- time scales (t_*, t_*_{SL})

Surface momentum flux
$$(\overline{u'w'})_s = u_*^2$$
Buoyancy flux $(\overline{w'b'})_s = B_0$ Obukhov length $L = \frac{-u_*^3}{kB_0} = \frac{-u_*^3}{k(\overline{w'b'})_s}$

u_∗-Friction velocity k-von Karman const. z-height z₀-roughness length

Typical values: *u*_∗=0.3 m/s

$$B_0 = -3 \times 10^{-4} \text{ m}^2 \text{s}^{-3}$$
 (nighttime)

*B*₀=1.5 x 10⁻² m²s⁻³ (midday)

L=200m (-10W/m²) L=-5m (500 W/m²)

Roughness length,

h $\lambda = \frac{n \cdot b \cdot h}{S}$

Fig. 4.1 Variation of z_0/h_c with element density, based on the results of Kutzbach (1961), Lettau (1969) and Wooding *et al.* (1973), represented by the shaded area and solid curve. Some specific atmospheric data are also shown as follows: A and B, trees; C and D, wheat; E, pine forest; F, parallel flow in a vineyard; G, normal flow in a vineyard. Analogous wind-tunnel data are described in Seginer (1974). From Garratt (1977b).

Logarithmic wind profiles, $u_*=0.5$ m/s:

Logarithmic wind profiles, $u_*=0.5$ and 0.2 m/s:

Logarithmic wind profiles,

Fig. 10.4 Comparison of the observed wind profiles in the neutral surface layer of day 43 of the Wangara Experiment with the log law [Eq. (10.6)] (solid lines). [Data from Clarke *et al.* (1971).]

Task 1

Giving the following wind speeds measured at various heights in a neutral boundary layer, find:

-friction velocity u_* -the aerodynamic roughness length (z_0) -shear stress at the ground τ

-wind speed at 6m

z(m)	U(m/s)
1000	10
500	9.5
300	9.0
100	8.0
50	7.4
20	6.5
10	5.8
4	5.0
1	3.7

Task 2

Giving the following wind speeds measured at various heights in a neutral boundary layer, find:

-friction velocity u_* -the aerodynamic roughness length (z_0) -shear stress at the ground τ

-wind speed at 6m

z(m)	U(m/s)
1000	10
500	9.5
300	9.0
100	8.0
50	7.4
20	6.5
10	5.8
4	5.0
1	3.7

Task 3

Giving the following wind speeds measured at various heights in a neutral boundary layer, find:

-the aerodynamic roughness length (z₀) -friction velocity u_{*}

-shear stress at the ground $\ensuremath{\boldsymbol{\tau}}$

-wind speed at 6m

z(m)	U(m/s)
1000	10
500	9.5
300	9.0
100	8.0
50	7.4
20	6.5
10	5.8
4	5.0
1	3.7

Task 4

Giving the following wind speeds measured at various heights in a neutral boundary layer, find:

-the aerodynamic roughness length (z_0)

- -friction velocity u*
- -shear stress at the ground T
- -wind speed at 6m

z(m)	U(m/s)
1000	10
500	9.5
300	9.0
100	8.0
50	7.4
20	6.5
10	5.8
4	5.0
1	3.7

Displacement height (d)

Aerodynamic bulk formula $(\tau = \rho)C_D \cdot U^2$

Drag Coefficient (C_D)

 $\tau = \rho \cdot C_D \cdot U^2 \text{ surface stress}$

 $(\overline{u'w'})_s = \frac{\tau}{\rho}$

In practice the drag coefficient is given usually with respect to the wind speed at z=10m and

with respect to the wind speed at z=10m and for neutral conditions (C_{DN10})

Typical values of the drag coefficient over the land are significantly larger than over the water

$$C_{D \text{ land}} \approx 7 \times 10^{-3}$$

 $C_{D \text{ water}} \approx 1 \times 10^{-3}$

