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generations of coupled climate models. This approach 

is new, since previous model intercomparison studies 

either focused on specific processes, avoided making 

quantitative performance statements, or considered 

a rather narrow range of models.

Several important issues complicate the model 

validation process. First, identifying model errors 

is difficult because of the complex and sometimes 

poorly understood nature of climate itself, making 

it difficult to decide which of the many aspects of 

climate are important for a good simulation. Second, 

climate models must be compared against present 

(e.g., 1979–99) or past climate, since verifying ob-

servations for future climate are unavailable. Present 

climate, however, is not an independent dataset since 

it has already been used for the model development. 

On the other hand, information about past climate 

carries large inherent uncertainties, complicating the 

validation process of past climate simulations. Third, 

there is a lack of reliable and consistent observations 

for present climate, and some climate processes 

occur at temporal or spatial scales that are either 

unobservable or unresolvable. Finally, good model 

performance evaluated from the present climate 

does not necessarily guarantee reliable predictions of 

future climate. Despite these difficulties and limita-

tions, model agreement with observations of today’s 

climate is the only way to assign model confidence, 

with the underlying assumption that a model that ac-

curately describes present climate will make a better 

projection of the future.

Considering the above complications, it is clear 

that there is no single “ideal way” to characterize 

and compare model performances. Most previous 

model validation studies used conventional statis-

tics to measure the similarity between observed and 

modeled data. For example, studies by Taylor et al. 

(2001) and Boer and Lambert (2001) characterized 

model performance from correlation, root-mean-

square (RMS) error, and variance ratio. Both studies 

found similar ways to combine these three statistics 

 C oupled climate models are sophisticated tools 

designed to simulate the Earth climate system 

and the complex interactions between its compo-

nents. Currently, more than a dozen centers around 

the world develop climate models to enhance our 

understanding of climate and climate change and to 

support the activities of the Intergovernmental Panel 

on Climate Change (IPCC). However, climate models 

are not perfect. Our theoretical understanding of 

climate is still incomplete, and certain simplifying 

assumptions are unavoidable when building these 

models. This introduces biases into their simulations, 

which sometimes are surprisingly difficult to correct. 

Model imperfections have attracted criticism, with 

some arguing that model-based projections of climate 

are too unreliable to serve as a basis for public policy. 

In particular, early attempts at coupled modeling in 

the 1980s resulted in relatively crude representations 

of climate. Since then, however, we have refined our 

theoretical understanding of climate, improved the 

physical basis for climate modeling, increased the 

number and quality of observations, and multiplied 

our computational capabilities. Against the back-

ground of these developments, one may ask how 

much climate models have improved and how much 

we can trust the latest coupled model generation.

The goal of this study is to objectively quantify 

the agreement between model and observations us-

ing a single quantity derived from a broad group 

of variables, which is then applied to gauge several 
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most fundamental and best-observed aspect of climate, 

and because of restrictions imposed by available model 

data in calculating higher moments of climate (most 

CMIP-1 fi elds are archived as climatological means, 

prohibiting the derivation of temporal variability). Th is 

concept is somewhat similar to the CPI performance 

measure introduced by Murphy et al. (2004), but in 

contrast to the present study, Murphy et al. calculated 

the CPI from a range of rather closely related models.

Our choice of climate variables, which is shown in 

Table 1, was dictated by the data available from the 

models. In most cases, we were able to validate the 

model data against true observation-based data, but 

for a few variables of the free atmosphere, the usage 

of reanalyses as validation data was unavoidable. In 

terms of the specific uncertainties associated with 

each of those validating datasets, separate analysis 

showed that the data can be considered as good ap-

proximations to the real state of present climate for 

the purpose of model validation.

We obtained the model performance index by first 

calculating multiyear annual mean climatologies 

from global gridded fields of models and validating 

data. The base period for the observations was 1979–

99, covering most of the well-observed post-1979 

satellite period. For some observations, fewer years 

were used if data over the entire period were not avail-

able. For the CMIP-1 models, long-term climatologies 

of the control run for Northern Hemisphere winter 

(December, January, February) and summer (June, 

July, August) conditions were downloaded from the 

archives and averaged to annual mean climatologies. 

The CMIP-2 climatologies were calculated by averag-

ing the annual mean data of the control run over the 

years 61–80. The CMIP-3 present-day climatologies 

were formed using the same base period as for the 

observations, and the preindustrial climatologies 

were taken from the last 20 simulation years of the 

corresponding control run. For any given model, only 

one member integration was included. In the rare case 

that a climate variable was not provided by a specific 

model, we replaced the unknown error by the mean 

error over the remaining models of the correspond-

ing model generation. One model (BCC-CM1 from 

CMIP-3) was excluded because it only provided a 

small subset of variables needed for this study.

In determining the model performance index, we 

first calculated for each model and variable a normal-

ized error variance e2 by squaring the grid-point dif-

ferences between simulated (interpolated to the ob-

servational grid) and observed climate, normalizing 

in a single diagram, resulting in nice graphical vi-

sualizations of model performance. This approach, 

however, is only practical for a small number of mod-

els and/or climate quantities. In addition, Taylor’s 

widely used approach requires centered RMS errors 

with the mean bias removed. We, however, consider 

the mean bias as an important component of model 

error. In a 2004 article, Murphy et al. introduced a 

Climate Prediction Index (CPI), which measures the 

reliability of a model based on the composite mean-

square errors of a broad range of climate variables. 

More recently, Min and Hense (2006) introduced a 

Bayesian approach into model evaluation, where skill 

is measured in terms of a likelihood ratio of a model 

with respect to some reference.

THREE GENERATIONS OF MODEL DATA. 
Th is study includes model output from three diff er-

ent climate model intercomparison projects (CMIP): 

CMIP-1 (Meehl et al. 2000), the fi rst project of its kind 

organized in the mid-1990s; the follow-up project 

CMIP-2 (Covey et al. 2003, Meehl et al. 2005); and 

CMIP-3 (PCMDI 2007) (aka, IPCC-AR4), representing 

today’s state of the art in climate modeling. Th e CMIP-

3 data were taken from the “climate of the twentieth 

century” (20C3M) (hereaft er simply “present-day”) 

and the “preindustrial control” (PICNTRL) (hereaft er 

simply “preindustrial”) experiments. Th ese simula-

tions were driven by a rather realistic set of external 

forcings, which included the known or estimated his-

tory of a range of natural and anthropogenic sources, 

such as variations in solar output, volcanic activity, 

trace gases, and sulfate aerosols. Th e exact formula-

tion of these forcings varied from model to model, 

with potential implications for model performance. In 

contrast, the CMIP-1 and CMIP-2 model output was 

derived from long control runs, in which the forcings 

were held constant in time. Th ese forcings were only 

approximately representative for present climate.

MEASURE OF MODEL PERFORMANCE. As 

outlined before, there are many diff erent ways to mea-

sure and depict model performance. Given the extra 

challenge of this study to evaluate and depict a large 

number of models and climate variables, we decided 

to design our own measure. Our strategy was to cal-

culate a single performance index, which can be easily 

depicted, and which consists of the aggregated errors in 

simulating the observed climatological mean states of 

many diff erent climate variables. We focused on vali-

dating the time-mean state of climate, since this is the 
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Th e fi nal model performance index was formed by 

taking the mean over all climate variables (Table 1) 

and one model using equal weights,

 I Im vm

v
2 2= .  (3)

The final step combines the errors from different 

climate variables into one index. We justify this step 

by normalizing the individual error components prior 

to taking averages [Eqs. (1) and (2)]. This guarantees 

that each component varies evenly around one and 

has roughly the same variance. In this sense, the 

individual I2
vm

 values can be understood as rankings 

with respect to individual climate variables, and the 

final index is the mean over all ranks. Note that a 

very similar approach has been taken by Murphy et 

al. (2004).

RESULTS. Th e outcome of the comparison of the 

57 models in terms of the performance index I2 is il-

lustrated in the top three rows of Fig. 1. Th e I2 index 

varies around one, with values greater than one for 

underperforming models and values less than one 

on a grid-point basis with the observed interannual 

variance, and averaging globally. In mathematical 

terms this can be written as

 e w s ovm n vmn vn vn

n

2 2 2= -( )( )Â s ,  (1)

where svmn
 is the simulated climatology for climate 

variable (v), model (m), and grid point (n); ovn  is the 

corresponding observed climatology; w
n
 are proper 

weights needed for area and mass averaging; and σ2
vn

 

is the interannual variance from the validating ob-

servations. Th e normalization with the interannual 

variance helped to homogenize errors from diff er-

ent regions and variables. In order to ensure that 

diff erent climate variables received similar weights 

when combining their errors, we next scaled e2 by 

the average error found in a reference ensemble of 

models—that is,

 I e evm vm vm

m C M
2 2 2

20 3

=
=

,  (2)

where the overbar indicates averaging. Th e reference 

ensemble was the present-day CMIP-3 experiment. 

Variable Domain Validation data Period

Sea level pressure ocean ICOADS (Woodruff et al. 1987) 1979–99

Air temperature zonal mean ERA-40 (Simmons and Gibson 2000) 1979–99

Zonal wind stress ocean ICOADS (Woodruff et al. 1987) 1979–99

Meridional wind stress ocean ICOADS (Woodruff et al. 1987) 1979–99

2-m air temperature global CRU (Jones et al. 1999) 1979–99

Zonal wind zonal mean ERA-40 (Simmons and Gibson 2000) 1979–99

Meridional wind zonal mean ERA-40 (Simmons and Gibson 2000) 1979–99

Net surface heat flux ocean ISCCP (Zhang et al. 2004),  OAFLUX (Yu et al. 2004) 1984 (1981) –99

Precipitation global CMAP (Xie and Arkin 1998) 1979–99

Specific humidity zonal mean ERA-40 (Simmons and Gibson 2000) 1979–99

Snow fraction land NSIDC (Armstrong et al. 2005) 1979–99

Sea surface temperature ocean GISST (Parker et al. 1995) 1979–99

Sea ice fraction ocean GISST (Parker et al. 1995) 1979–99

Sea surface salinity ocean NODC (Levitus et al. 1998) variable

TABLE 1. Climate variables and corresponding validation data. Variables listed as “zonal mean” are latitude–height 
distributions of zonal averages on twelve atmospheric pressure levels between 1000 and 100 hPa. Those listed as 
“ocean,” “land,” or “global” are single-level fields over the respective regions. The variable “net surface heat flux” 
represents the sum of six quantities: incoming and outgoing shortwave radiation, incoming and outgoing longwave ra-
diation, and latent and sensible heat fluxes. Period indicates years used to calculate observational climatologies.
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for more accurate models. Since I2 is an indicator 

of model performance relative to the mean over the 

present-day CMIP-3 ensemble, we used a logarithmic 

scale to display the index. Th e results indicate large 

diff erences from model to model in terms of their 

ability to match the observations of today’s climate. 

Further, the results clearly demonstrate a continu-

ous improvement in model performance from the 

early CMIP-1 to the latest CMIP-3 generation. To 

our knowledge, this is the fi rst systematic attempt 

to compare the performance of entire generations of 

climate models by exploring their ability to simulate 

present climate. Figure 1 also shows that the realism 

of the best models approaches that of atmospheric 

reanalysis (indicated by the green circle), but the 

models achieve this without being constrained by 

real observations. 

We also obtained quantitative estimates of the 

robustness of the I2 values by validating the models 

against a large synthetic ensemble of observational 

climatologies and by calculating the range of I2 values 

encompassed by the 5th and 95th percentiles. The 

synthetic ensemble was produced by selecting the years 

included in each climatology using bootstrapping (i.e., 

random selection with replacement). To the extent that 

the circles in Fig. 1 overlap, it is not possible to distin-

guish the performance of the corresponding models 

in a way that is statistically significant.

ROLE OF FORCINGS. Given the more realistic 

forcing used for the present-day CMIP-3 simulations, 

the superior outcome of the corresponding models is 

perhaps not too surprising. One might ask how im-

portant realistic forcing was in producing such good 

simulations. To this end, we included the preindus-

trial CMIP-3 simulations in our comparison. Both 

the present-day and the preindustrial simulations 

were conducted with identical models. Th e only dif-

ference was the forcing used to drive the simulations, 

which was similar to preindustrial conditions for the 

preindustrial experiments and similar to present-day 

conditions for the present-day experiments. 

The outcome of validating the preindustrial experi-

ment against current climate is shown in the bottom 

row of Fig. 1. As expected, the I2 values are now larger 

than for the present-day simulations, indicating poorer 

performance. However, the mean difference between 

the two CMIP-3 simulations, which was due only to 

different forcings, is much smaller than that between 

CMIP-3 and the previous two model generations. 

The latter difference was due to different models and 

forcings combined. We conclude that the superior 

performance of the CMIP-3 models is mostly related 

to drastic model improvements, and that the forcings 

used to drive these models play a more subtle role. 

Two developments—more realistic parameteriza-

tions and finer resolutions—are likely to be most 

FIG. 1. Performance index I2 for individual models (circles) and model generations (rows). Best performing 
models have low I2 values and are located toward the left. Circle sizes indicate the length of the 95% confidence 
intervals. Letters and numbers identify individual models (see supplemental online material at doi:10.1175/
BAMS-89-3-Reichler); flux-corrected models are labeled in red. Grey circles show the average I2 of all models 
within one model group. Black circles indicate the I2 of the multimodel mean taken over one model group. The 
green circle (REA) corresponds to the I2 of the NCEP/NCAR reanalyses. Last row (PICTRL) shows I2 for the 
preindustrial control experiment of the CMIP-3 project.
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responsible for the good performance seen in the 

latest model generation. For example, there has been 

a constant refinement over the years in how sub-

grid-scale processes are parameterized in models. 

Current models also tend to have higher vertical 

and horizontal resolution than their predecessors. 

Higher resolution reduces the dependency of models 

on parameterizations, eliminating problems since 

parameterizations are not always entirely physical. 

The fact that increased resolution improves model 

performance has been shown in various previous 

studies.

SENSITIVITY OF THE INDEX. We now address 

the question of how sensitive our results are with 

respect to our particular choice of variables. We used 

bootstrapping to investigate how I2—averaged indi-

vidually over the four model groups—varies with an 

increasing number v of variables. For any given v, we 

calculated I2 many times, every time using diff erent 

randomly chosen variable combinations taken from 

Table 1. As shown in Fig. 2, the spread of outcomes 

decreases with increasing number of variables. When 

six or more variables are used to calculate I2, the av-

erage performances of the three model generations 

are well separated from each other—independent 

from the exact choice of variables. Only the two 

CMIP-3 experiments cannot be distinguished from 

each other, even for a very large number of variables. 

Also note that CMIP-3 always performs better than 

CMIP-1, and almost always better than CMIP-2, even 

when only one variable is included. These results 

indicate that I2, when used to compare entire model 

generations, is robust with respect to the number and 

choice of selected variables.

VALUE OF THE MULTIMODEL MEAN. We 

also investigated the performance of the multimodel 

means (black circles in Fig. 1), which are formed by 

averaging across the simulations of all models of one 

model generation and using equal weights. Notably, 

the multimodel mean usually outperforms any single 

model, and the CMIP-3 multimodel mean performs 

nearly as well as the reanalysis. Such performance 

improvement is consistent with earlier fi ndings by 

Lambert and Boer (2001), Taylor et al. (2004), and 

Randall et al. (2007) regarding CMIP-1, AMIP-2, and 

CMIP-3 model output, respectively.

The use of multimodel ensembles is common 

practice in weather and short-term climate forecast-

ing, and it is starting to become important for long-

term climate change predictions. For example, many 

climate change estimates of the recently released 

global warming report of the IPCC are based on the 

multimodel simulations from the CMIP-3 ensemble. 

The report dealt with the problem of inconsistent 

predictions, resulting from the use of different mod-

els, by simply taking the average of all models as the 

best estimate for future climate change. Our results 

indicate that multimodel ensembles are a legitimate 

and effective means to improve the outcome of cli-

mate simulations. As yet, it is not exactly clear why 

the multimodel mean is better than any individual 

FIG. 2. Spread of I2 values (lowest to highest) for an 
increasing number of randomly chosen variables v. 
Shown are index values averaged individually over the 
four model groups (corresponding to the grey circles in 
Fig. 1). In order to avoid nonunity results for 20C3M, all 
values were normalized by the mean I2 over all three 
model generations, and not by the mean of the 20C3M 
group alone (as in Fig. 1, see Eq. 2).

FIG. 3. Fraction of flux-adjusted models among the 
three model generations.
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model. One possible explanation is that the model so-

lutions scatter more or less evenly about the truth (un-

less the errors are systematic), and the errors behave 

like random noise that can be efficiently removed by 

averaging. Such noise arises from internal climate 

variability, and probably to a much larger extent from 

uncertainties in the formulation of models.

ROLE OF FLUX CORRECTION. When dis-

cussing coupled model performances, one must 

take into account that earlier models are generally 

fl ux corrected, whereas most modern models do not 

require such corrections (Fig. 3). Flux correction, 

or adding artifi cial terms of heat, momentum, and 

freshwater at the air–sea interface, prevents models 

from drift ing to unrealistic climate states when in-

tegrating over long periods of time. Th e drift , which 

occurs even under unforced conditions, is the result 

of small fl ux imbalances between ocean and atmo-

sphere. Th e eff ects of these imbalances accumulate 

over time and tend to modify the mean temperature 

and/or salinity structure of the ocean. Th e tech-

nique of fl ux correction attracts concern because of 

its inherently nonphysical 

nature. The artificial cor-

rections make simulations 

at the ocean surface more 

realistic, but only for arti-

fi cial reasons. Th is is dem-

onstrated by the increase in 

systematic biases (defi ned as 

the multimodel mean minus 

the observat ions) in sea 

surface temperatures from 

the mostly f lux-corrected 

CMIP-1 models to the gen-

erally uncorrected CMIP-3 

models (Fig. 4a). Because 

sea surface temperatures 

exert an important control 

on the exchange of prop-

erties across the air–sea 

interface, corresponding 

errors readily propagate to 

other climate fields. This 

can be seen in Fig. 4b, which 

shows that biases in ocean 

temperatures tend to be ac-

companied by same-signed 

temperature biases in the 

free troposphere. On the 

other hand, the reduction of strong lower strato-

spheric cold biases in the CMIP-3 models indicates 

considerable model improvements. Th ese cold biases 

are likely related to the low vertical and horizontal 

resolution of former model generations and to the 

lack of parameterizations for small-scale gravity 

waves, which break, deposit momentum, and warm 

the middle atmosphere over the high latitudes. 

Modern models use appropriate parameterizations 

to replace the missing momentum deposition.

CONCLUSION. Using a composite measure of 

model performance, we objectively determined the 

ability of three generations of models to simulate 

present-day mean climate. Current models are 

certainly not perfect, but we found that they are 

much more realistic than their predecessors. This 

is mostly related to the enormous progress in model 

development that took place over the last decade, 

which is partly due to more sophisticated model 

parameterizations, but also to the general increase 

in computational resources, which allows for more 

thorough model testing and higher model resolu-

FIG. 4. Systematic biases for the three model generations. (a) Biases in an-
nual mean climatological mean sea surface temperatures (K); (b) Biases in 
zonal mean air temperatures (K). Statistically significant biases that pass 
a Student’s t-test at the 95% level are shown in color; other values are sup-
pressed and shown in white. Gray areas denote no or insufficient data.
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tion. Most of the current models not only perform 

better, they are also no longer f lux corrected. Both 

improved performance and more physical formula-

tion suggest that an increasing level of confidence 

can be placed in model-based predictions of cli-

mate. This, however, is only true to the extent that 

the performance of a model in simulating present 

mean climate is related to the ability to make reli-

able forecasts of long-term trends. It is hoped that 

these advancements will enhance the public cred-

ibility of model predictions and help to justify the 

development of even better models.

Given the many issues that complicate model 

validation, it is perhaps not too surprising that the 

present study has some limitations. First, we note the 

caveat that we were only concerned with the time-

mean state of climate. Higher moments of climate, 

such as temporal variability, are probably equally as 

important for model performance, but we were un-

able to investigate these. Another critical point is the 

calculation of the performance index. For example, 

it is unclear how important climate variability is 

compared to the mean climate, exactly which is the 

optimum selection of climate variables, and how 

accurate the used validation data are. Another com-

plicating issue is that error information contained 

in the selected climate variables is partly redundant. 

Clearly, more work is required to answer the above 

questions, and it is hoped that the present study will 

stimulate further research in the design of more ro-

bust metrics. For example, a future improved version 

of the index should consider possible redundancies 

and assign appropriate weights to errors from differ-

ent climate variables. However, we do not think that 

our specific choices in this study affect our overall 

conclusion that there has been a measurable and im-

pressive improvement in climate model performance 

over the past decade.
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