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ABSTRACT

Using information from the A-Train satellites, the properties and radiative effects of eastern Pacific Ocean

boundary layer clouds are evaluated in the Community Atmosphere Model, version 5 (CAM5), from the

summer of 2007 and 2008. The cloud microphysical properties are inferred using measurements from

CloudSat and CALIPSO (CC) that are then used to calculate the broadband radiative flux profiles.

Accounting appropriately for sampling differences between the measurements and the simulation, evidence

of the ‘‘too few, too bright’’ low cloud bias is found in CAM5. Single-layer low clouds have a frequency of

occurrence of 42% from CC, as compared with just 29% in CAM5, and the averaged cloud radiative kernel

(CRK) for themodel shows stronger cooling. For stratocumulus in particular, the cooling in themodel CRK is

larger by a factor of 2 relative to the observations, implying an overly sensitive tropical low cloud feedback.

Differences in the day/night occurrence of stratocumulus help to explain some of the difference in the CRK.

The cloud-type microphysics for liquid clouds is represented reasonably well by the model, with a tendency

for smaller water paths and smaller effective radii. Overall, the occurrence and CRK have partially com-

pensating errors such that the net cooling at the top of the atmosphere for eastern Pacific low clouds

is 243Wm22 in CAM5, as compared with 232Wm22 from CC. The cooling effect in the model is accom-

plished by fewer low clouds with a narrower range of properties, as compared withmore clouds with a broader

range of properties in the observation-based dataset.

1. Introduction

The wide range in climate sensitivity, from 2.1 to 4.7K

for a doubling of CO2 (Andrews et al. 2012), is due

in large part to the uncertainty in cloud feedbacks

(Dufresne and Bony 2008; Vial et al. 2013; Ceppi et al.

2017). It is well established that much of the intermodel

spread in predicted cloud feedbacks is associated with

marine boundary layer (MBL) clouds, particularly in the

subtropical oceans (Bony and Dufresne 2005; Caldwell

et al. 2016) but also at higher latitudes in both hemi-

spheres (Gordon and Klein 2014). While the sign of the

MBL cloud feedback is not certain, most models sug-

gest that MBL cloud cover decreases with warming

(Sherwood et al. 2014), implying a positive feedback.

Part of the uncertainty in low cloud feedbacks stems

from competing effects for low cloud changes (Gettelman

and Sherwood 2016), although the dominant mechanism

seems to be a drying of the planetary boundary layer due

to increased mixing with drier air aloft, as the sea surface

temperature rises (Qu et al. 2014). Uncertainty in climate

sensitivity has also specifically been traced to the repre-

sentations of cumulus by shallow convection schemes in

GCMs (Zhao et al. 2016; Vial et al. 2016).

Cloud radiative kernels (Zelinka et al. 2012) have

allowed for the direct calculation of cloud-type feed-

backs. In addition, the kernel method allows for the

feedbacks to be decomposed into components that are

due to changes in cloud amount, cloud optical depth, and

cloud height. For example, Zelinka et al. (2016) highlights

the importance of reductions in low-level clouds, showing

that the low cloud amount feedback is the single largest

contributor to the spread in net cloud feedback.

Reducing the uncertainty in cloud feedbacks will re-

quire accurate simulations of clouds, and an under-

standing of how cloud cover and properties will changeCorresponding author: Elizabeth Berry, betsy.berry@utah.edu
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in a warming climate (Stevens and Bony 2013).

Information from satellite measurements is helping to

diagnose some of the connections between cloud prop-

erties and radiation, which can then be used to evaluate

and improve models (Wang and Su 2013; Dolinar et al.

2015; Mace and Berry 2017; Winker et al. 2017). From

satellite observations, a number of outstanding issues

have been identified with the representation of low-level

clouds in models. For example, models tend to overes-

timate the mean cloud liquid water path (LWP) relative

to various observational datasets (Li et al. 2018; Stephens

et al. 2019). Despite large differences in LWP and cloud

amount, climate models show good agreement in cloud

radiative effects (Lauer and Hamilton 2013), suggesting

that some amount of model tuning is used to achieve the

constrained radiative fluxes.

The tendency for GCMs to produce low clouds that

are underestimated in amount and overly reflective has

been well documented. The ‘‘too few, too bright’’

problem was coined by Nam et al. (2012), who showed

that models predict overly bright low clouds, even for a

correct low cloud cover. Engström et al. (2014) also

showed that GCMs have a tendency for small cloud

fraction to be related to high cloud albedo, relative to

MODIS and CERES. Medeiros and Nujiens (2016)

evaluated cumulus clouds in the trade wind regions and

found that the models generally capture the cloud ra-

diative effect but underestimate cloud cover, relative to

CERES and CALIPSO. Konsta et al. (2016) used

CALIPSO data to document the lack of boundary layer

clouds around the tropical belt, and the overestimate of

the low cloud reflectance relative to Polarization and

Anisotropy of Reflectances for Atmospheric Sciences

coupled with Observations from a Lidar (PARASOL),

and documented the inability of GCMs to reproduce the

contrast between higher cloud reflectance observed

along the eastern Pacific Ocean and the lower values

over the tropical trade wind cumulus region.

The difficulty in simulating low clouds and their ef-

fects is intriguing, given the apparent simplistic nature of

these clouds, compared to mixed-phase or ice clouds.

For instance, because liquid clouds reside low in the

atmosphere, they can more easily be studied by surface

remote sensing and be measured by research aircraft. In

addition, the spherical shape of liquid drops greatly

simplifies the relationships between their microphysical

and radiative properties. However, thin liquid clouds,

with water paths of less than 100 gm22, can be mis-

leadingly challenging to observe because they tend to be

geometrically and optically thin and broken in structure

(Turner et al. 2007). Active remote sensing, with its

vertically resolved measurements and small footprints,

has made strides in this area. For example, Chepfer et al.

(2008) used CALIPSO data to evaluate cloudiness in a

GCM and found that discrepancies in marine boundary

layer clouds are more pronounced than in previous

evaluations based on passive observations.

Here, we use A-Train satellite observations to evaluate

low clouds simulated in the Community Atmosphere

Model, version 5 (CAM5; Neale et al. 2010). Our objective

is to evaluate cloud fraction, cloud brightness, cloud mi-

crophysical properties, and cloud radiative effects (CREs)

in the model. To the extent that the model produces CREs

that are similar to observations, does it do so for the correct

reasons, or are there compensating errors that lead to good

agreement for the radiation? Our findings will provide in-

sight into the validity of predictions of low cloud feedbacks.

2. Data and method

In this study we primarily emphasize low-level liquid

clouds, althoughwe present results for all cloud types.We

focus on a 208 3 208 region in the east Pacific (108S–108N,

908–1108W) during two June through September periods

(2007 and 2008). The domain is centered on the equator,

with the eastern boundary along the longitude of the

Galápagos Islands, and located downwind of the maxi-

mum coverage for stratocumulus along the east side of

the subtropical ocean basin (Rozendaal et al. 1995). This

region is characterized by the easterly trade winds and

captures the stratocumulus to cumulus transition that

occurs as the boundary layer and sea surface temperature

increase and stratocumulus gradually transition to scat-

tered trade cumulus (Miller et al. 1998).

For assessing clouds and their impacts, we adapt the cloud

radiative kernel framework to A-Train observations and

CAM5, making two main modifications. First, we evaluate

present-day cloud radiative effects instead of cloud feed-

backs, given the short-term record of the A-Train satellites.

Second, we create cloud radiative kernels that are derived

from populations of observed and simulated clouds sepa-

rately to evaluate potential differences in the sensitivity of

the top-of-atmosphere (TOA) radiation to cloud types in

theobservations andmodel.Using thismethod,weallow for

differences in the observation-based CRK and the model-

based CRK. For instance, a different distribution of clouds

within a given cloud-top pressure–cloud optical depth

(CTP–t) bin would lead to a different value for the

CRK.Differences in the resulting cloud radiative effects

for the model and observations may be due to differ-

ences in cloud fraction and/or differences in the sensi-

tivity of the TOA radiation to clouds.

a. Observations

CloudSat’s cloud profiling radar (Tanelli et al. 2008),

along with CALIPSO’s optical lidar (Winker et al.
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2010), provides vertically resolved measurements of

hydrometeor properties (Stephens et al. 2018). In this

study, we harness the synergy ofCloudSat andCALIPSO

(hereinafter together referred to as CC) to characterize

liquid clouds. The lidar is particularly important for ob-

serving boundary layer clouds below 1km (Henderson

et al. 2013) since the radar signal is affected by scattering

of the pulse from the bright ocean surface. Cloud layers

are obtained from the RL-GeoProf CloudSat dataset

(Mace and Zhang 2014) and are defined as a vertically

continuous set of 240-m-resolution volumes that contain

hydrometeors. Profiles with only one cloud layer present

are identified as single-layer clouds.

The general approach used here is adapted from the

method outlined in Mace (2010) as modified and im-

plemented in Berry et al. (2019). Microphysical prop-

erties for ice cloud are obtained from the 2C-ICE data

product (Deng et al. 2015). The properties of low-level

clouds that exist above 1 km and that are observed by the

CloudSat radar are derived using a combination of radar

Z and optical depth from MODIS (day) that is then

constrained by CERES solar fluxes or by combining

radar Z with LWP from AMSR-E during the night [see

appendices A and B of Mace (2010)]. Two issues have

limited the use of CloudSat in studying low-level clouds.

First, the detection threshold of the radar at 230 dBZ

misses some fraction of nonprecipitating low-level clouds.

Second, below ;1km above the ocean surface, the

CloudSat radar is unable to detect weaker returns asso-

ciated with clouds (Marchand et al. 2008). We found that

neglecting these clouds resulted in significant biases rel-

ative to CERES. Therefore, we implement a revised

method that uses attenuated backscatter fromCALIPSO

and 94-GHz microwave brightness temperature from

CloudSat (Dobrowalski and Tanelli 2019) when a non-

precipitating (layer-maximum dBZ , 215) single-layer

cloud is observed at temperatures above freezing. With

the additional requirement that the cloudy and nearest

cloud-free column brightness temperature (TB) have a

difference of at least 1K, the LWP is estimated using

microwave brightness temperature differences between

cloudy profiles and adjacent clear profiles after Mace and

Protat (2018). We restrict the search for a nearby clear

pixel to within 50km. However, given the location of our

region, centered over the equatorial ocean, we would not

expect large variations in the clear-sky TB. For profiles

associated with continuous cloud fields for which we

cannot find a clear pixel within 50km, we revert to the Z–t

or Z–LWP retrieval. The failure to find a nearby clear

pixel for TB is the sole limiting factor for 12% of liquid

clouds that meet all the other criteria for the new tech-

nique. With an estimated LWP, we segregate the layers

into those that are optically thin such that the ocean

surface is identifiable in the CALIOP profiles (type 1)

and those that are optically thick for which radar re-

flectivity is measured (type 2a) or for which no radar

reflectivity is reported because the layer is below 1km or

because the layer has radar reflectivity that is below the

detection threshold of CloudSat (type 2b).

For type-1 optically thin layers, the visible optical

depth is estimated using the difference in the calculated

surface return that has been attenuated only for

Rayleigh scattering and the lidar signal from the surface

bin of the cloud-attenuated column. The method is de-

scribed in Flamant et al. (2003), Josset et al. (2008), and

Josset et al. (2011). With an estimate of the LWP from

CloudSat TB and with an estimated layer optical depth,

we are able to then estimate the layer effective radius

(Stephens 1978). With the uncertainties of the LWP and

optical depth estimated to be on the order of 50%, the

effective radius would be uncertain to something like

70%. While this uncertainty is large, it allows us to dis-

tinguish between layers that might be isolated drizzle

from a recently evaporated cloud or a true non-

precipitating cloud layer.

The properties of type-2a layers that have radar

reflectivity, TB, and lidar attenuated backscatter near

cloud top are reasonably straightforward to estimate

using methods described in Mace and Protat (2018) and

elsewhere. The properties of type-2b layers for which we

have no radar reflectivity are more challenging. These

layers are optically thick such that we are unable to use

attenuation of surface reflectance to estimate optical

depth. Therefore, we use the information provided by

CALIPSO and the methods described by Hu et al.

(2007) and Li et al. (2011) to constrain the cloud-top

extinction and effective radius. These, combined with

water path from TB, allow us to estimate the column

radiative properties.

For the low-cloud results presented below, 85% use

the Z–t or Z–LWP retrieval to obtain the liquid mi-

crophysical properties. For the 15% of low clouds that

use the new technique, the majority of these clouds ex-

isted below 1km or were below the detection threshold

of CloudSat. Of these, 4.1% are type-1 retrievals, 6.6%

are type-2a retrievals, 0.3% are type-2b retrievals, and

4.7% use the TB-derived LWP with an initial guess for

effective radius. We note that the use of CloudSat to

constrain cloud properties below 1km and below the

detection threshold of the radar using the TB derived

from the radar receiver noise is a unique use of

CloudSat; while additional development of algorithms is

being pursued, this initial application enables study of a

new part of the cloud occurrence spectrum that has

previously only been examined with reflected sunlight.

By applying these new methods, we were able to
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significantly improve TOA solar flux comparisons with

CERES on the low end of the cloud forcing spectrum.

Cloud layer statistics from CloudSat and CALIPSO

for the 2006–16 period using the Radar-Lidar

Geometrical Profile Product (RL-GeoProf; Mace and

Zhang 2014) show that our eastern Pacific study region

experiences a total cloud coverage of 66% annually,

with a multilayer cloud fraction of 19%. The study re-

gion is dominated by clouds with top heights ,2 km,

making it an ideal location for studying tropical

boundary layer clouds.We follow the ISCCP convention

for classifying clouds as a 2D histogram, with cloud-

top height on one axis and thin, moderate, and thick

optical depth thresholds on the orthogonal axis. The

cloud-type names we associate with the optical depth

bins are just notional for convenience and are not

necessarily meant to represent meteorological

cloud types.

An example of a typical cloud scene is shown in Fig. 1.

Approximately two-thirds (69%) of the cloudy profiles

in this scene contain stratocumulus cloud, and nearly

one-third (29%) represent cumulus cloud. From the

2C-PRECIP-COLUMNdataset (Haynes et al. 2009), 17%

of the cloud profiles are flagged as containing precipitation

(6% possible, 5% probable, 5% certain).

b. Model

The model data analyzed in this study are from the

National Center for Atmospheric Research (NCAR)

CAM5. The model was run globally for 2005–08 in a

standard climate configuration using observed sea sur-

face temperatures and sea ice fraction. The simulation

FIG. 1. (a) Radar reflectivity from CloudSat, (b) total attenuated backscatter from CALIPSO, and (c) combined

radar–lidar cloud mask for a typical low cloud scene in the east Pacific domain (908–1008W, 108S–108N). (d) The

location of the A-Train cloud segment within the domain.
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operated with a horizontal resolution of 1.98 3 2.58 and a
physics time step of 30min. There are 30 vertical pres-

sure levels, with the lowest 9 levels (pressure. 763 hPa)

corresponding to geopotential heights below 2.5 km for

our study domain.

The stratiform cloud microphysics are represented

by a two-moment scheme that predicts the mixing ratio

and number concentration for four separate hydrome-

teor species including cloud water, cloud ice, rain, and

snow (Morrison and Gettelman 2008). Cloud fraction is

diagnostic and the stratus liquid cloud fraction is pre-

dicted based on relative humidity. CAM5 uses a moist

PBL scheme to parameterize the eddy diffusivity based

on the turbulent kinetic energy (Bretherton and Park

2009). Precipitation is diagnostic, and the autoconversion

of cloud water to rain is given by Khairoutdinov and

Kogan (2000), which has been shown to produce rain

formation that is closer to satellite observations than other

autoconversion schemes (Suzuki et al. 2015). From the

shallow convection scheme (Park and Bretherton 2009),

detrained condensate is added to cloud liquid using the

detrained mass with an assumed mean volume radius

of 8mm.

The radiation scheme used in CAM5 is the Rapid

Radiative Transfer Model for GCMs (RRTMG; Iacono

et al. 2008; Mlawer et al. 1997) and the subgrid cloud

characterization in RRTMG is treated using the

maximum-random cloud overlap assumption. Aerosols

are a prognostic variable and their radiative effects are

included in the clear sky and cloudy calculations. Rain,

however, is not included in the radiation calculations

(Li et al. 2014). Unlike snow, the absence of rain in the

radiation calculation in GCMs does not lead to large

errors (Hill et al. 2018).

c. Model–observation comparison

When comparing satellite observations and model

output, one must be aware of the inherent differences

in the datasets and take steps to account for those dif-

ferences. Given that the CC observations are sun-

synchronous, we sample CAM5 3-hourly instantaneous

output at the time closest to the CC overpasses (0130

and 1330 UTC) to capture similar aspects of the diurnal

cycle of clouds and shortwave radiative effects. Since the

CC microphysical retrieval includes all hydrometeors

(i.e., cloud water and rain) in the profile, a more direct

comparison to the model liquid water path includes fil-

tering out CC profiles that are flagged as precipitating at

the surface (Li et al. 2008). In this study, all CC profiles

containing rain are excluded from the comparison of the

cloud microphysics. All hydrometeor profiles (including

those with rain) are used in the observational results for

cloud fraction and cloud radiative effects.

In terms of cloud detection, between CloudSat and

CALIPSO we will observe nearly all single-layer low

clouds. Optically thin clouds are observed by the lidar,

while optically thicker clouds above 1 km are observed

by the radar. A limitation of the radar and lidar is the

potential inability to measure cloud below 1km in

scenes where the lidar has been attenuated. However,

unique to this study is the use of the 94-GHz brightness

temperature, which provides an estimate of the LWP in

these previously uncharacterized boundary layer clouds.

Hence, the observed single-layer low cloud fraction can

be directly compared to the model.

We do not expect the variability in CAM5 cloud

properties to be as large as the measurements since the

spatial resolution of the model (;200km 3 200 km) is

much coarser than the CC observations (1.4 km 3
2.1 km), and the grid box quantities represent the

average conditions over a comparatively large area.

Furthermore, the cloud radiative effects from CAM5

cannot readily be attributed to specific cloud types be-

cause the grid box average cloud properties (cloud

fraction, microphysics, and radiation) are the result of a

mixture of clouds that are combined. To account for this

and make a more consistent comparison with CC, we

apply a sampling technique to approximate the subgrid-

scale statistics following a method that is standard

in model–measurement comparison studies. Using the

maximum-random overlap assumption (Jakob and

Klein 1999; Collins 2001), we divide CAM5 grid boxes

into 100 subcolumns based on the model cloud fraction

profile (e.g., a cloud fraction of 60% at 3 kmwould result

in 60 of 100 subcolumns containing cloud at that level).

For each height level, the microphysical properties

remain homogeneous across the cloudy subcolumns.

Doing this for each vertical level in the model grid box

then yields 100 subcolumns with varying cloud profiles.

In terms of cloud statistics, our subcolumn method

produces similar results to what a satellite simulator

would accomplish, as demonstrated in Berry et al. (2019).

d. Radiation

Following the method outlined in Berry et al. (2019),

the retrieved (CC) and simulated (CAM5) cloud mi-

crophysical properties (water content and re) are, re-

spectively, used to calculate the cloud radiative

properties that then serve as inputs for the radiative

transfer model. The cloud radiative properties (single-

scattering albedo, extinction, and asymmetry parameter)

for theCCprofiles andCAM5 subcolumns are determined

using the same established parameterizations for liquid

cloud (Slingo 1989; Kiehl et al. 1998) and ice cloud (Fu

1996; Fu et al. 1998). Atmospheric profiles of temperature

and specific humidity are obtained from the European
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Centre for Medium-Range Weather Forecasts Auxiliary

(ECMWF-AUX) CloudSat data product for the CC cal-

culations and from CAM5 thermodynamic variables for

the model calculations.

The same radiative transfer model is used to obtain

the radiative fluxes for the observed CC profiles and

simulated CAM5 subcolumns. The shortwave and

longwave radiative fluxes are calculated with the

‘‘RAPRAD’’ (Toon et al. 1989; Kato et al. 2001; Mlawer

et al. 1997), a two-stream rapid radiative transfer model

that uses the k-distribution method and correlated-k

assumptions. The clear-sky fluxes for each profile are

calculated by setting the cloud amount to zero. The

cloud radiative effect is obtained by differencing the all-

sky and clear-sky fluxes.

Figure 2 shows the retrieved microphysical properties

(optical depth, integrated water path, and layer-mean

effective radius) and radiative fluxes for the CC case

study presented in Fig. 1. Shown for comparison are

estimates from other observational datasets like the

Moderate Resolution Imaging Spectroradiometer (MODIS;

Platnick et al. 2017) and Clouds and the Earth’s Radiant

FIG. 2. Comparison of our retrieved cloud properties and radiative fluxes (black dots) with

other datasets (red) for the case study presented in Fig. 1: (a) upwelling shortwave flux at the

TOA, (b) outgoing longwave flux at the TOA, (c) cloud optical depth, (d) LWP, and

(e) effective radius.
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Energy System (CERES; Kratz et al. 2014) The majority of

the profiles (526/600) in this scene contain single-layer low

cloud and the new liquid phase retrieval method described

above is used to obtain the microphysical properties for

slightly more than half (272) of the cloud profiles. We find a

substantial range in cloud properties and radiative fluxes just

among these low clouds, and the A-Train retrieval captures

these range well based on the comparison to the radiative

fluxes. Interestingly, the A-Train retrieval correlates rela-

tively well with completely physically independent methods

to derive optical depth and liquid water path. This is much

less true for the effective radius, highlighting how difficult it

is to get a handle on this variable with remote sensing.

On average, these low cloud layers have a LWP around

100gm22 and optical depth near 10, producing a shortwave

CRE of2195Wm22 and a longwave CRE of 8Wm22.

To validate our approach with the model, we compare

our calculated subcolumn radiative fluxes from

RAPRAD, averaged within each grid box, to the in-

ternally generated fluxes fromRRTMG that are created

in the model run and stored in the CAM5 output, as in

Berry et al. (2019). The magnitude of the average bias

between our calculated radiation for the model sub-

columns and CAM5 grid box radiation variables, is less

than 5Wm22 for the clear-sky and all-sky shortwave

and longwaveTOAfluxes.Hence our subcolumnmethod

is able to reproduce the mean CAM5 radiative fluxes

appropriately.

3. Cloud occurrence and radiative effects results

a. Cloud occurrence

For the period under study, the CC observations

give a total cloud fraction of 77% in the east Pacific

region, which agrees well with previous seasonal esti-

mates for this region (Mace et al. 2009; Mace andWrenn

2013). Multilayer clouds are present in 25% of all CC

profiles, and cloud-free columns represent 23% of pro-

files. The total cloud fraction in CAM5 is very similar, at

74%, with 28% of all subcolumns containing multiple

cloud layers, and 26% of subcolumns being cloud-free.

We find that single-layer clouds are slightly less common

at the time of the daytime overpass relative to the

nighttime overpass (43% vs 57% for CC and 46% vs

54% for CAM5).

In this study we evaluate profiles/subcolumns with

single-layer clouds, such that we can assign the radiative

effects to a specific cloud type. Model subcolumns con-

taining single-layer clouds are defined as having only

one cloud layer in the vertical and are identified using

the cloud fraction profile (0 5 no cloud; 1 5 cloud). In

addition, we evaluate the single-layer cloud fraction for

cloud types defined as a function of cloud-top height

(CTH) and t, similar to cloud-type definitions for the

International Satellite Cloud Climatology Project

(ISCCP; Rossow and Schiffer 1999). The resulting cloud

fraction histograms for single-layer clouds are shown in

Fig. 3 (left panels) and summarized in Table 1. CC ob-

serves more (53%) single-layer clouds relative to CAM5

subcolumns (46%). In terms of CTH, the single-layer

cloud fraction is dominated by low-topped clouds in

both the model and observations. In terms of optical

depth, cloud layers with moderate optical depth occur

most frequently in both the models and observations.

The histograms of cloud fraction reveal large differ-

ences for low cloud types. Most notably, the model

produces much fewer single-layer low clouds (29%) as

compared with that observed by CC (42%). For in-

stance, single-layer cumulus is observed to occur 7% of

the time in the CC observations, although it is almost

nonexistent (1%) in CAM5 subcolumns. In addition,

stratocumulus are also more common in the CC obser-

vations (28%) compared to CAM5 subcolumns (17%).

The relatively smaller fraction of cumulus and strato-

cumulus in the model could be related to issues with the

stratocumulus to cumulus transition [as noted in Kay

et al. (2012)], such as a geographic bias of where these

clouds are located.

Overall, CAM5 overestimates themost optically thick

clouds, while underestimating optically thinner clouds,

producing about 70% of the observed clouds that have

thin (9% for CAM5 vs 13% for CC) and intermediate

(21% for CAM5 vs 31% for CC) optical depths, and

nearly double the amount of clouds with the largest

optical depths (16% for CAM5 vs 9% for CC). In par-

ticular, low clouds with thin and intermediate optical

thickness (cumulus and stratocumulus) are under-

estimated by about one-half (18% for CAM5 vs 35% for

CC), while the most optically thick low cloud, stratus,

has a greater occurrence (11%) in the model relative to

observations (7%). These results agree well with those

of Zhang et al. (2005), who compared GCMs with

ISCCP and CERES data, finding evidence of too-few

low clouds and low clouds that are too bright.

b. Cloud radiative kernels

To assess the radiative effects by clouds types, we

create cloud radiative kernels, which describe the sen-

sitivity of the TOA radiation R to changes in cloud

fraction (CF), following CRK 5 ›R/›CF. Like CF, the

cloud radiative kernel is derived for single-layer clouds

as a function of CTP and t, and it has units of watts per

meter squared per percentage point. As in Berry et al.

(2019), we create observation- and model-derived

CRKs.
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The radiative fluxes for the observed and modeled

clouds are calculated in a consistent manner, using the

same parameterization for radiative properties and

same radiative transfer model. Our data-derived CRKs

represent the average cloud radiative effects, based on

all the observed/modeled single-layer clouds that occur

in a given cloud-type bin. Therefore, the magnitude of

the observation-based and model-specific radiative

kernels depends on their respective cloud microphysical

properties and temporal statistics.

The net cloud radiative kernels for CC and CAM5 are

presented in Fig. 3 (middle panels). Not shown is the

longwave (LW) kernel, since the LW effects of the

mostly commonly occurring low clouds are very small,

and the shortwave (SW) kernel, since it is very similar to

the net CRK for low cloud. The net CRKs show cooling

effects decreasing with CTH and increasing with optical

depth, with the exception of stratus, which is discussed

further below. For optically thin clouds (t, 3.6), we find

good agreement between the model and observations,

with the net CRK ranging from 20.77 cooling in cu-

mulus to 0.42Wm22 %21 warming for cirrus. The

largest differences in the net CRK occur for low clouds

(CTH , 3 km), with the model showing much stronger

cooling compared to the observations. For stratocumu-

lus, the most commonly occurring cloud type, the cool-

ing in the model CRK is larger by a factor of 2 than the

observation-based CRK (21.87Wm22 %21 for CAM5

vs 20.91Wm22 %21 for CC). Overall, the differences

for the most commonly occurring low cloud types tell us

TABLE 1. Occurrence frequencies (%) for single-layer clouds in the CloudSat–CALIPSO (CC) dataset and CAM5 subcolumns, using

cloud-type definitions based on cloud-top height (CTH) and optical depth t.

Cloud type CC absolute CAM5 absolute CC relative CAM5 relative

High (CTH . 9.5 km) 9 13 17 28

Middle (3 , CTH , 9.5 km) 2 4 4 9

Low (CTH , 3 km) 42 29 79 63

Total 53 46 100 100

Thin (t , 3.6) 13 9 25 19

Intermediate (3.6 , t , 23) 31 21 58 46

Thick (t . 23) 9 16 17 35

Total 53 46 100 100

FIG. 3. (left) Single-layer cloud fraction histogram (CF), (center) TOA net cloud radiative kernel (CRK), and (right) TOA net cloud

radiative effect (R 5 CF 3 CRK) as a function of cloud optical depth and cloud-top height for (top) the observed A-Train dataset and

(bottom) CAM5.
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that the model is making clouds that are brighter than

clouds in the real atmosphere.

c. Cloud radiative effects

We use our CRKs to calculate the cloud radiative

effects in the observations and model following, R 5
CRK3CF,whereR gives the contribution of each cloud

type to the TOA radiation (Wm22). The calculated

cloud radiative effects are therefore a function of the

cloud properties and cloud occurrence. Since we are

using the kernel approach, we can identify discrepancies

in observed and modeled CRK and CF for individual

cloud types.

From Fig. 3 (right panels), the net CRE for the east

Pacific, due to single-layer clouds, shows more cooling

from CAM5 (255Wm22) relative to the CC retrieval

(235Wm22). Much of this difference is due to strato-

cumulus and stratus clouds, which exhibit differences in

CF and radiative cooling. Some of the differences in CF

and CRK tend to compensate each other. For instance,

despite the greater sensitivity to cumulus in CAM5,

cumulus observed by CC have a stronger cooling effect

in the region, given their frequency of occurrence.

Overall, it is stratocumulus clouds that produce themost

cooling in this region in both the CC observations and

CAM5, owing to the fact that they are the most frequent

cloud type. However, the cooling due to stratocumulus

is a bit weaker in the CC retrieval (225Wm22) than in

CAM5 (233Wm22).

For cumulus and stratocumulus, we find that the low

cloud fraction is underestimated, and the sensitivity to

the TOA radiation is overestimated in CAM5, relative

to the CC retrieval. For the purposes of radiative bal-

ance, it would make sense that a difference in cloud

fraction would need to be offset by a difference in the

CRK. Our findings are further evidence of the ‘‘too few,

too bright’’ tropical low cloud bias in models. Beyond

low clouds, cirrus are the nextmost common single-layer

cloud type in this region, and their occurrence and radi-

ative effects show good agreement between CAM5 and

CC, similar to the results shown in Berry et al. (2019).

To further investigate these differences in CRE, we

compare the TOA upwelling solar flux between CERES

and CC and between CAM5 and CC in Fig. 4. First, the

upwelling solar flux retrieved from CC is compared to

the upwelling solar flux measured by CERES (top

panel). For this comparison, we determine the average

radiative fluxes for all CloudSat profiles within each

CERES footprint (from RAPRAD) and compare that

with the CERES radiative fluxes. Overall, A-Train is

slightly dimmer than CERES, with a mean bias of

6Wm22 in reflection, which is good agreement, con-

sidering that the CERES footprints represent a larger

area (20-km diameter) than the averaged A-Train pro-

files. The A-Train does have a larger peak in upwelling

TOA SWat 80Wm22, associated with the reflectance of

the ocean surface. This is due to the occurrence clear-sky

A-Train profiles within CERES footprints that are

partly cloudy. Second, we compare the distributions of

the upwelling solar flux for single-layer clouds observed

by CC and simulated by CAM5 (bottom panel). Overall,

CAM5 single-layer clouds are brighter than CC ob-

served clouds by an average of ;100Wm22 during the

daytime. While the shape of the PDF for A-Train pro-

files looks similar to that of CERES (top panel), for

CAM5 it does not. The distribution of reflected solar for

CAM5 is fundamentally different from both observa-

tional datasets, in large part due to differences in cloud-

type occurrence. The CAM5 distribution is composed of

relatively much more optically thick clouds with t . 23

(35% of single-layer clouds) compared to CC (17% of

single-layer clouds), as noted in Table 1. Besides first-

order differences in cloud occurrence, the SW reflection

FIG. 4. TOA upwelling shortwave flux (SW up) comparisons for

the study period (June–September 2007 and 2008) and domain

(east Pacific): (top) distribution of reflected solar measured from

CERES footprints (red; n 5 14 118) and retrieved from A-Train

profiles averaged to the footprints (black), and (bottom) distribu-

tion of reflected solar for single-layer clouds, calculated fromCAM

subcolumns (red; n 5 2.4 3 106) and retrieved from A-Train pro-

files (black; n5 2.53 105). Noted are the mean and median values

for the distribution of TOA SW up.
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for clouds in CAM5 could also be larger because of

differences in cloud microphysical properties.

4. Low cloud results

a. Day/night effects

In terms of differences in the CRKs, another possible

explanation may be differences in the day/night occur-

rence frequencies, since our data-based CRKs represent

the average radiative effects from clouds that are sam-

pled twice daily. We investigate this by showing the

distribution of TOASWcloud forcing, with daytime and

nighttime effects separated, in Fig. 5. First, in terms of

the day/night occurrence frequencies, we find that low

clouds tend to show evidence of a diurnal cycle. As low

cloud optical depth increases, occurrence at the night-

time overpass increases in both the model and obser-

vations. This agrees well with previous literature on the

diurnal cycle of marine low clouds, in which stratocu-

mulus coverage peaks in the early morning hours before

sunrise, while cumulus clouds have an increasing fre-

quency during the day (Wood 2012). Cumulus tend to

occur more frequently during the day (76% in CC; 72%

in CAM5), whereas stratus tend to occur more fre-

quently at night (85% in CC; 82% in CAM5), which

explains the weaker than expected cooling for stratus in

the CRKs. The day/night frequencies of stratocumulus

differ between the observations and model, with CC

observing a larger nighttime fraction (61%) and CAM5

observing a smaller nighttime fraction (42%). This

larger daytime fraction for CAM5 stratocumulus con-

tributes to a stronger cooling in the model CRK.

Putting aside differences in the day/night fraction, we

can examine just the daytime mean SW cloud forcing.

The mean daytime SW cloud forcing increases with in-

creasing optical depth, from275Wm22 for CC cumulus

(2107Wm22 for CAM5) to 2265Wm22 for CC stra-

tocumulus (2333Wm22 for CAM5) to2400Wm22 for

CC stratocumulus (2485Wm22 for CAM5). It is strik-

ing that this daytime-only comparison reveals more re-

flection by each single-layer low cloud type in CAM5

than in CC. This suggests that the population of low

clouds in the model tends to be optically thicker and/or

to have microphysical properties that differ from the CC

retrieval, such that they produce more solar reflection.

Although the high cloud types are not shown in Fig. 5,

note that the differences in the CRK for deep convec-

tion and nimbostratus are mostly related to differences

in the day/night cloud fractions, since the daytime SW

forcings for these cloud types agree reasonably well.

b. Microphysics

In addition to time-of-day differences, differences in

the CRKs could be related to differences in the cloud

microphysics. In Table 2 we present a comparison of the

low cloud properties (LWP, optical depth, and effective

radius) betweenCAM5, allCCclouds, andnonprecipitating

FIG. 5. The distribution of TOA shortwaveCREwithin each low cloud-type bin at the daytime overpass for single-layer clouds in theCC

dataset (black) and CAM5 (red). The mean and median CRE values (Wm22) are noted for each curve, along with the relative frequency

of daytime clouds.

TABLE 2.Mean properties for single-layer low clouds (CTH. 3 km and t, 166). CC-All is allCloudSat–CALIPSO observed low clouds,

and CC NP are nonprecipitating observed low clouds.

Frequency LWP (gm22) CF-normalized LWP (kgm22) Optical depth Effective radius (mm)

CC-All 41% 138.2 0.34 14.5 15.5

CC NP 32% 109.9 0.34 13.1 13.2

CAM5 26% 114.5 0.44 22.3 9.0
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(NP) CC clouds. ForNPCC, approximately 30%of the CC

stratocumulus and stratus have been screened out due to

possible, probable, or certain precipitation. The LWP for all

CC low clouds is 25%higher thanNPCC low clouds.While

the effective radius of all CC low clouds is also about 17%

higher than the respective cloud-only values. These differ-

ences between all CC liquid clouds andNPCC liquid clouds

show good agreement with similar results for MODIS-

derived cloud properties (Christensen et al. 2013).

In comparing the model low clouds to the NP CC

clouds, we find that CAM5 has a slightly higher mean

LWP of 115 gm22, as compared with a mean LWP of

110 gm22 from the observations, whereas the low cloud

mean effective radius in CAM5 tends to be smaller (9mm)

relative to the CCNPobservations (13mm). This observed

value is a bit lower than results from Mülmenstädt et al.
(2015), who report mean effective radii of 18–20mm from

MODIS for nonraining single-layer clouds in the tropics.

However, theMODISmean liquid effective radius (re_liq)

has been shown to be 1–2mm higher for stratocumulus

(Painemal and Zuidema 2011) and 7–12mm higher for

trade wind clouds (Haney 2013).

Another measure in Table 2 examines the LWP nor-

malized by the cloud fraction. Using this, McCoy et al.

(2016) found that GCMs generally overestimate the

cloud-fraction-normalized LWP when compared to

MODIS and they found a positive correlation between

the cloud-fraction-normalized LWP and SW up in the

tropics. We find similar results with our dataset. The

LWP normalized by NP single-layer cloud fraction is

0.34 kgm22 for CC and 0.44 kgm22 for CAM5.

Shown in Fig. 6 are the distributions of cloud micro-

physical properties as a function of low cloud type for

CAM5 and CC NP clouds. Overall, CAM5 does a fair

job of representing the cloud-type microphysics (optical

depth, integrated liquid water content, and liquid

effective radius). However, there are some important

differences.

We find that the mean of the LWP distribution for

each low cloud type tends to be underestimated by

CAM5, whereas the same statement is not true for the

median LWP, revealing that the CC distributions of

LWP tend to be skewed. However, the LWP statistics

from Table 2 reveal that for all NP low clouds types

combined, the CC retrieval has a slightly smaller mean

LWP, compared to CAM5. Hence when the cloud oc-

currence is taken into account, CAM5 produces a larger

mean low-cloud LWP relative to CC. However, when

we examine the mean properties of the individual cloud

types, the LWPs are underestimated by the model. In

this sense, comparing only the overall mean low-cloud

LWP will mask compensating errors in cloud-type LWP

and occurrence, giving a false impression about the

models’ ability to represent the LWP for low clouds. For

instance, it is not that CAM5 tends to produce larger

cloud-type LWPs, but rather that CAM5 produces less

of the optically thinner cloud layers, including cumulus

that are largely missing, and more of the optically thick

stratus type (which is seen prominently in the PDFs of

LWP for stratus). Therefore, partitioning by cloud type

and looking at the PDFs of LWP provides a more de-

tailed and insightful comparison of LWP in the model.

Similar to LWP, the mean liquid effective radius

(re_liq) for each low cloud type tends to be slightly lower

in CAM5. The liquid effective radius estimated fromCC

tends to decrease as cloud optical depth increases.

Meanwhile, the mean value of re_liq for CAM5 is con-

sistently 8–9mmacross the low cloud types, although the

model PDFs of re_liq are different for each low cloud

type. The persistence of this mean value of re_liq across

the cloud types may be indicative of the shallow cumulus

convection scheme at work, since it detrains condensate

at a prescribed size of 8mm.

Interestingly, taken together, CAM5 microphysics

produce similar statistics of cloud optical depth for each

low cloud type. For the most commonly occurring low

cloud type, stratocumulus, there are some notable dif-

ferences in the microphysics. CAM5 exhibits a smaller

range in cloud liquid effective radius (maximum 16mm).

Also the shape of the LWP distribution for stratocu-

mulus is different, with LWP being skewed toward

smaller values (mean5 70 gm22; median5 80 gm22) in

CAM5, relative to the CC retrieval, which is skewed

toward larger values (mean5 104gm22;median5 80gm22).

The results for the cloud microphysics comparison

should be put in context of how the model handles these

clouds. Cumulus clouds (and likely some fraction of

stratocumulus, as defined in this study) are parameter-

ized by the shallow convective scheme, while the strat-

iform clouds are parameterized by the microphysics

scheme. Hence the clouds handled by the shallow con-

vective scheme have a diagnosed LWP and specified

effective radius. The stratocumulus results presented

here may be due to a hybrid of clouds produced with the

two different parameterizations, which may explain

some of the differences we find, like the shape of the

LWP distribution.

c. Radiative effects as a function of optical depth

To further diagnose the connections between clouds

and radiation, we examine which clouds specifically are

responsible for the majority of the SW cooling effects,

and are therefore radiatively most important, in the

observations and model. Figure 7 shows single-layer low

cloud properties and calculated radiative effects as a

function of optical depth for the model subcolumns and
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observations. The left panels show the distributions of

optical depth, which tend to be skewed toward larger

values for all times (mostly at night). The mean optical

depth for the distribution of CAM5 low clouds is larger

(21) compared to the CC observations (14), owing to the

fact that CAM5 produces fewer cumulus and more

stratus. Additionally, the low clouds in CAM5 have a

50/50 day/night ratio, while the low clouds in the CC

observations are a little more likely to occur at the

nighttime overpass (40%) than in daytime (60%).

Shown in the middle panels of Fig. 7 are the TOA net

CRKs, as a function of optical depth, for observed and

modeled low clouds. While we see a similar pattern for

changes in the CRKs as the low cloud optical depth in-

creases, the magnitude of the sensitivity is larger in

CAM5. The daytime-only CRKs show increasing cool-

ing with increasing optical depth, up to an optical depth

around 20. The overall CRK shows cooling increasing

up to an optical depth around 6, and then decreasing

cooling as the optical depth increases beyond about 16 in

both CAM5 and CC retrieval. This occurs because the

fraction of nighttime clouds increases with increasing

optical depth as shown in Figs. 5 and 7 (left panels).

When we weigh the TOA net CRK by the cloud oc-

currence, we obtain the net CRE as a function of low

cloud optical depth (Fig. 7, right panels). Single-layer

FIG. 6. Distributions of nonprecipitating cloud properties—(top) optical depth, (middle) water path, and (bottom) effective radius—for

each low cloud type: (left) cumulus, (middle) stratocumulus, and (right) stratus for the CC dataset (black) and CAM5 (red). The area

under the curves sums to the fraction of profiles/subcolumns in that particular cloud type. The frequency of occurrence, along with the

mean and median values of the cloud property distributions, is noted on each panel.
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low clouds in CAM5 produce a larger TOA net cooling

effect (243Wm22) than do single-layer low clouds in

the CC observations (232Wm22). Overall, stratocu-

mulus is the cloud type that is most important radia-

tively, given their frequency of occurrence and cooling

effects. In particular, we find that stratocumulus clouds,

with an optical depth of 10–20, contribute the most to

the TOA radiative cooling in both the model and ob-

servations. However, overall, the cooling in CAM5 is

accomplished by more optically thick clouds that occur

over a narrower range of optical depths. CAM5 low

clouds produce a stronger cooling for the region

(243Wm22 for CAM5 vs 232Wm22 for CC), despite

the fact that the model has far fewer single-layer low

clouds (29% for CAM5 vs 42% for CC). In this sense,

CAM5 overcompensates for having too few low clouds

of thin and intermediate optical depths by having more

optically thick low clouds (stratus), and producing low

clouds that are brighter than those observed by CC.

The daytime CRK tends to reach a minimum in

forcing beyond optical depth of approximately 15 in

both the model and the observations (Fig. 7), As dem-

onstrated in Oreopoulos and Platnick (2008), changes in

liquid cloud radiative effects due to changes in optical

depth are nonlinear, with albedo increasing up to an

optical depth of 13. Hence changes in cloud liquid water

path and effective radius—the bulk features that would

tend to change the optical depth—would have little ef-

fect on the CRE for a given cloud coverage. Since the

CAM5 clouds occupy this domain much more than the

observations (42% of daytime low clouds in the model

exist at optical depth greater than;15 compared to 18%

FIG. 7. Distribution of optical depth and cloud radiative effects for single-layer low clouds (CTH, 3 km) in (top) the A-Train dataset

and (bottom) CAM5. Daytime-only is shown in blue; all is in black. (left) The corresponding PDFs of cloud optical depth; noted are the

mean andmedian t and relative frequency of single-layer low clouds. (center) TOAnet CRK as a function of t. (right) The resulting TOA

net cloud radiative effects (frequency 3 CRK) and the summed effect of all single-layer low clouds.
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of the observed clouds), any feedbacks associated with

these clouds could most easily be realized by changing

low cloud coverage while changes to bulk cloud prop-

erties would have minimal effect on the CRE and would

not be realized as an optical depth feedback (G. L.

Stephens 2020, personal communication).

5. Conclusions

Here we take advantage of the synergy of available in

the A-Train for characterizing liquid clouds in the east

Pacific and use that information to evaluate these clouds

in CAM5. Using the kernel technique, we have quanti-

fied the low cloud radiative effects, and how these ra-

diative effects are achieved by liquid clouds observed in

nature and by liquid clouds simulated by the model. Our

goal has been to determine to what extent the model is

able to replicate the observed liquid clouds properties

and radiative cooling.

Overall, we find that CAM5 reasonably simulates the

shapes of the distributions for cloud-type microphysics.

While the model produces brighter low clouds with

stronger CRE, the ranges of SW CRE and trends in SW

cooling increasing with cloud-type optical depth are

reasonably represented by the model. The challenge for

the model lies in reproducing small-scale distributions

with coarse simulations.

In terms of cloud occurrence, cumulus and stratocu-

mulus are substantially underpredicted by the model

(18% for CAM5 vs 35% for CC). In particular, we find

that the largest differences in cloud fraction are for the

most optically thin low clouds. This is somewhat ex-

pected, given that cumulus are going to be a function of

the diagnostic shallow convection scheme, with highly

uncertain radiative properties.

The cloud radiative kernels show that the model TOA

radiation has a larger sensitivity to changes in low cloud

fraction, with a tendency for stronger cooling by low

clouds in CAM5 (Fig. 3, middle panels). Differences in

the day and night cloud fractions contribute to the bright

bias in the model CRK for stratocumulus. When con-

sidering the daytime-only radiative effects (Fig. 5), the

differences between CAM5 and CC stratocumulus are

reduced (;70Wm22 bias).

In terms of cloud properties, we find that CAM5 have

broadly realistic ranges of LWP although effective ra-

dius tends to occupy a narrower range of smaller values

(Fig. 6). When considering the microphysics for low

clouds on the whole, the LWP-normalized-by-cloud

fraction is larger for single-layer low clouds in CAM5,

and suggests too large a water path for the given cloud

fraction. In addition, CAM5 low clouds have a higher

mean optical depth relative to CC (Fig. 7, left panels),

given less cumulus and more stratus. Overall, the

PDFs of low cloud optical depth and microphysics

show less variability in the modeled low cloud types,

such that the cooling in the model is produced by a

narrower range of clouds than in the observations

(Fig. 7, right panels).

Stratocumulus is themost commonly occurring single-

layer cloud type, and the cloud type that is most

important radiatively, in both CAM5 and CC. While

stratocumulus clouds are responsible for the majority of

cooling in both the observations (225Wm22) and

model (233Wm22), there are compensating errors in

CAM5 that lead to this result. For instance, the occur-

rence of single-layer stratocumulus in CAM5 is just 60%

of what it is in the CC observations (17% for CAM5 vs

28% for CC), while the net cooling for stratocumulus,

per change in cloud fraction, is 2 times as large in the

model (21.87Wm22 %21) relative to CC retrieval

(20.91Wm22 %21). This factor-of-2 difference

(;90Wm22 bias) in the CRKs for stratocumulus has

implications for the modeled cloud feedbacks, which

result largely from changes in the low cloud fraction.

More specifically, the state-dependent bias in the model

CRK will result in an overly sensitive tropical low cloud

feedback. The CRE tends to asymptote to a minimum

value beyond optical depth ;15—right in the middle

range of the stratocumulus bin. At these higher optical

depths, the model CRK is overly sensitive to changes in

occurrence because changes to optical depth (water path

and effective radius) are less efficient at changing theCRE.

The total CAM5 cooling exhibited by single-layer low

clouds in the east Pacific region is too large (243Wm22

for CAM5 vs 232Wm22 for CC), produced by low

clouds that are too bright (Fig. 5) and much too few

(29% for CAM5 vs 42% for CC). These differences arise

as a result of compensating effects in the model that may

be due to the complex interaction of the diagnostic

shallow convective parameterization in CAM5 (which

has diagnostic LWP and a fixed assumption about

effective radius) with the two-moment stratiform mi-

crophysics. The discrepancies we find between the ob-

servations and CAM5 for tropical low clouds suggest

that the low cloud feedback from this generation of

models remains uncertain and is likely too large, due in

part to the diurnal variations. Since the simulated clouds

tend to have optical depths that are too large, the most

efficient path to a changed forcing is via changes to cloud

occurrence. The real world seems to be less sensitive to

changes in coverage because the optical depth distri-

bution exists more in the range where changes to optical

depth can change the cloud radiative forcing. Therefore,

changes to bulk microphysics in nature could play a

greater role in changing the forcing as the climate
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warms. Since low clouds are a source of so much spread

in climate sensitivity, improving the representations of

these clouds could reduce the uncertainty in climate

projections. CAM6 has attempted to remedy this prob-

lem with a more advanced scheme for shallow turbu-

lence (Bogenschutz et al. 2013) that better couples

shallow cumulus motions with the boundary layer and

prognostic stratiform microphysics. It will be interesting

to see if this improves the representation of this critical

region, and it has been shown to affect cloud feedbacks

(Gettelman et al. 2019).
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