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ABSTRACT

The distribution of clouds and their radiative effects in the Community Atmosphere Model, version 5

(CAM5), are compared to A-Train satellite data in Southeast Asia during the summer monsoon. Cloud

radiative kernels are created based on populations of observed and modeled clouds separately in order to

compare the sensitivity of the TOA radiation to changes in cloud fraction. There is generally good agreement

between the observation- and model-derived cloud radiative kernels for most cloud types, meaning that the

clouds in the model are heating and cooling like clouds in nature. Cloud radiative effects are assessed by

multiplying the cloud radiative kernel by the cloud fraction histogram. For ice clouds in particular, there is

good agreement between the model and observations, with optically thin cirrus producing a moderate

warming effect and cirrostratus producing a slight cooling effect, on average. Consistent with observations,

themodel also shows that themedian value of the ice water path (IWP) distribution, rather than themean, is a

more representative measure of the ice clouds that are responsible for heating. In addition, in both obser-

vations and the model, it is cirrus clouds with an IWP of 20 gm22 that have the largest warming effect in this

region, given their radiative heating and frequency of occurrence.

1. Introduction

Clouds exert a diverse and significant influence on

Earth’s radiation budget, and understanding how clouds

may change in a warming climate continues to be a

major challenge (Stephens 2005; Dufresne and Bony

2008). While the Intergovernmental Panel on Climate

Change (IPCC) reported numerous improvements in

various aspects of the representation of clouds in their

Fifth Assessment Report (AR5), differences in cloud

feedbacks are still responsible formuch of the variability

in estimates of climate sensitivity (Boucher et al. 2013).

Generally defined as the change in surface temperature

resulting from a doubling ofCO2, the climate sensitivity

ranges from 2.1 to 4.7K (Andrews et al. 2012). A large

amount (70%) of the variability in climate sensitivity has

been attributed to cloud feedbacks (Vial et al. 2013).

Therefore, an accurate representation of clouds in

general circulation models (GCMs) is a high priority

(Stevens and Bony 2013). Satellite observations will

continue to play a crucial role in this effort by advanc-

ing our understanding of how clouds interact with their

environment (Mace and Berry 2017).

While the cloud radiative effect (also known as the

cloud forcing) measures the radiative impact of clouds

(i.e., the flux change in a spectral band at some defined

vertical boundary over what would occur in clear sky), the

cloud feedback measures the change in cloud radiative

effect due to a change in surface temperature at equilib-

rium (Soden et al. 2004; Sherwood et al. 2014). To better

understand the source of uncertainty in cloud feedbacks,

the role of different cloud types has been investigated

(Ceppi et al. 2016; Gettelman and Sherwood 2016). It is

well established thatmuch of the spread in predicted cloud

feedback in climate models is associated with marine

boundary layer (MBL) clouds (Bony and Dufresne 2005;

Caldwell et al. 2016). The sign of theMBL cloud feedback

is uncertain at this time althoughmost models suggest that

MBL cloud cover decreases with warming (Sherwood

et al. 2014) implying that the feedback is positive. InCorresponding author: Elizabeth Berry, betsy.berry@utah.edu
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contrast, models show consensus for a positive high-cloud

feedback (Soden and Vecchi 2011; Zelinka et al. 2013).

This is consistent with the proportionally higher anvil

temperature (PHAT) hypothesis, which predicts a posi-

tive longwave feedback as a result of tropical anvil clouds

rising in a warmer climate (Zelinka and Hartmann 2010).

There is some observational evidence, although not fully

convincing at this time, that this change in high cloudsmay

already be occurring (Norris et al. 2016).

A common approach for calculating climate feed-

backs is the radiative kernel method (Soden and Held

2006). Using this method, individual climate feedbacks

are determined as the product of two parameters, the

radiative kernel of the base state (i.e., sensitivity of the

radiation to the feedback variable) and a climate re-

sponse pattern (i.e., the change in the feedback variable,

normalized by the surface temperature change between

two states). But given that the radiative effects of clouds

are highly nonlinear, the traditional radiative kernel

method is not suitable. Instead, cloud feedback has been

obtained as a residual or estimated from changes in

cloud radiative effect, while accounting for cloud

masking effects, whereby clear-sky responses are di-

minished by the presence of clouds (Soden et al. 2008).

A novel technique for directly calculating cloud feed-

backs was introduced by Zelinka et al. (2012). In this

approach, histograms of cloud radiative kernel and cloud

fraction are expressed as a joint function of cloud-top

pressure (CTP) and optical thickness t, with bins repre-

senting different cloud types following the ISCCP con-

vention (Rossow and Schiffer 1999). Multiplying the

cloud radiative kernel by the change in cloud fraction due

to a doubling ofCO2, and normalizing by the change in

surface temperature, yields the cloud feedback for each

CTP–t bin. A distinct advantage of this method is the

ability to quantify the contribution of specific cloud types

to the overall cloud feedbacks. For instance, Zelinka et al.

(2012) show that high clouds produce a wider range of

shortwave and longwave feedbacks across models than

low clouds. Also, high clouds, despite having the largest

influence on the longwave cloud feedback, contribute less

to the net cloud feedback than low clouds because their

longwave (LW) and shortwave (SW) impacts partially

cancel. The wide range of SW and LW feedbacks for high

clouds among models suggests that more work needs to

be done on the validity of high-cloud representation. In

addition, the spread in the SW and LW feedback com-

ponents highlights a discrepancy among models, which

should not be overlooked in light of the consensus in high-

cloud net feedback.

Satellite observations are playing an increasingly im-

portant role in evaluating howwell clouds are represented

in models, in terms of their occurrence, properties, and

radiative effects (Klein et al. 2013; Wang and Su 2013;

Dolinar et al. 2015). In particular, several studies have

identified areas of progress and outstanding issues with

the representation of high-level clouds. Tsushima et al.

(2013) showed that errors in cloud radiative effects are

primarily due to errors in cloud fraction and cited a

systematic low bias in the frequency of anvil cirrus in the

tropics, with the implication that the positive longwave

feedback expected from the PHAT hypothesis could be

underestimated in models. Evaluation of cloud vertical

structure in models has shown that deep convective

clouds do not reach as high in altitude as observed (Su

et al. 2013), and that simulated high-level clouds are

geometrically too thick (i.e., fill toomany upper levels of

the column) compared to observations (Cesana and

Waliser 2016). In terms of cloud microphysics, the in-

termodel spread and errors in cloud water content are

largest in the upper troposphere (Jiang et al. 2012) and

large discrepancies remain in the annual mean cloud ice

water path (IWP), ranging from a factor of 2 up to a

factor of 10 difference between models and observa-

tional datasets when considering the means of the IWP

PDF (Li et al. 2012). Lauer and Hamilton (2013) report

large differences in cloud amount and liquid water path

but relatively good agreement in the simulation of cloud

radiative effects compared to satellite observations, sug-

gesting that tuning has been applied to achieve radiative

balance. This result makes sense given that the total ra-

diative flux is known quite well, while cloud properties

like water path are not constrained as tightly by obser-

vations. In their assessment of liquid clouds, Lauer and

Hamilton (2013) conclude that there is a critical need for a

similar assessment of ice clouds in order to identifymodel

deficiencies that require attention.

Berry and Mace (2014) used A-Train satellite data to

perform an analysis of ice-cloud properties and radia-

tive effects over a particular region dominated by the

northern summer monsoon in Southeast Asia. Several

findings emerged from that paper that motivate this

research. Berry and Mace (2014) show that the fre-

quency distribution of ice water path is highly skewed

such that the median of the IWP PDF is a much more

representative statistic of the radiative effect of tropical

ice clouds. In particular, they demonstrated that the

mean of the IWP PDF—a measure of central tendency

often used in model—observation comparisons (Jiang

et al. 2012) is a particularly poor diagnostic of the TOA

radiative effect of these clouds because of the skewness

of the PDF. Second, Berry and Mace showed that given

their frequency and radiative properties, cirrus with an

ice water path around 20 gm22 contribute most signifi-

cantly to the heating at the top of the atmosphere,

leading to a conclusion that radiatively important cirrus

4146 JOURNAL OF CL IMATE VOLUME 32



are those that are optically thin and characteristic of the

median ice water path.

Here, we seek to determine whether ice clouds simu-

lated in a leading GCM, the Community Atmosphere

Model, version 5 (CAM5; Neale et al. 2010), are heating

the atmosphere in a manner similar to what has been

diagnosed frommeasurements. Our goal is to ascertain to

what extent the simulated ice clouds reproduce radiative

effects like those exhibited in the A-Train observations.

In particular, is heating in the model upper troposphere

distributed similarly with IWP as is diagnosed from

measurements? The answer to this question has implica-

tions for the well-known positive feedback found to exist

in most GCMs where tropical cirrus rise in response to

surface warming (Zelinka and Hartmann 2010). We

contend that if the upper-tropospheric heating inGCMs is

distributed similarly with IWP as is found in nature, then a

measure of validity can be ascribed to the model pre-

dictions of positive feedback.

To answer these questions, we adapt the radiative

kernel framework to A-Train observations and CAM5.

While we are unable to examine cloud feedback given

the short-term nature of the A-Train satellites, we can

evaluate the present-day cloud occurrence and radiative

effects. In addition, we create cloud radiative kernels

that are derived from averages of observed and simu-

lated clouds, in a fashion similar to Yue et al. (2016), in

order to evaluate potential differences in the sensitivity

of the TOA radiation to cloud types. Using this meth-

odology, differences in cloud radiative effects between

themodel and observations can arise from differences in

cloud fraction and/or differences in the sensitivity of the

TOA radiation to cloud types. While we present results

of cloud occurrence and radiative effects for all cloud

types, we particularly focus on ice clouds and our un-

derstanding of this cloud type.

2. Data and methodology

a. Observations

This study focuses on a 2-yr period (2007–08) in

Southeast Asia (58S–258N, 808–1208E) during the sum-

mer monsoon (June–September). During this season,

the region experiences extremely high cloud-cover amount,

in excess of 80%, and is dominated by high-level clouds

(Das et al. 2017), making it an ideal location for studying

tropical cirrus.

The A-Train constellation of satellites has provided

more than a decade of near simultaneous observations

of the atmosphere, clouds, and radiation (L’Ecuyer

and Jiang 2010). Moreover, the active sensors in the A-

Train, CloudSat and CALIPSO (CC), have provided

vertically resolved measurements of hydrometeors and

aerosols (Stephens et al. 2018). The combination of

passive and active sensors in the A-Train provides in-

dependent information about clouds that can be used for

deriving cloud properties (Mace 2010; Delanoë and

Hogan 2010; Henderson et al. 2013).

The synergy of the active remote sensors has been

especially useful for understanding cloud vertical

structure and retrieving cloud properties. The 94-GHz

Cloud Profiling Radar (CPR) on CloudSat provides

measurements of radar reflectivity (Z) profiles (Tanelli

et al. 2008). CALIOP, the optical lidar on CALIPSO

(Winker et al. 2010) provides measurements of attenu-

ated backscatter and depolarization. While the CPR

provides information primarily on optically thicker hy-

drometeor layers, the lidar senses optically thin clouds

that are often below the sensitivity of the radar. Taken

together, observations from CC provide detailed and

unprecedented cloud statistics (Mace et al. 2009; Mace

andWrenn 2013). The lidar is particularly important for

describing the full range of tropical ice clouds, given that

the lower third of the cloud ice water path PDF is ob-

served by the lidar only, and that both the lidar and radar

are necessary to characterize the cirrus that are most

important radiatively (Berry and Mace 2014).

In this study we take advantage of the CC measure-

ments to characterize the clouds and radiation in South-

eastAsia and to evaluate ice clouds simulated in a general

circulationmodel.Hydrometeor layers in theCC data are

identified from the combined radar–lidar cloud mask

in the radar–lidar geometrical profile product (RL-

GEOPROF) CloudSat dataset (Mace andZhang 2014),

and single-layer clouds are identified as profiles with only

one cloud layer present. The ice and liquid-cloud prop-

erties are obtained separately. Liquid-cloud microphysi-

cal properties, including water content and effective

radius re are derived with a Z–t or Z–LWP retrieval

(Mace 2010). Ice-cloud microphysical properties are ob-

tained from a combined CC optimal estimation retrieval

in the level 2C ice cloud property product (2C-ICE) data

product (Deng et al. 2015). The 2C-ICE retrieval is

combinedwith the liquid-cloud retrieval, such that clouds

are all ice above the freezing level. Thermodynamic

profiles of temperature T and relative humidity are ob-

tained from the European Centre for Medium-Range

Weather Forecasts Auxiliary (ECMWF-AUX) CloudSat

dataset, which interpolatesECMWF state variables to the

CPR bins (Partain 2007).

The deep convection associatedwith themonsoon does

present a challenge for CC. In heavy precipitation, the

radar signal often becomes fully attenuated and is typi-

cally complicated bymultiple scattering, thereby affecting

retrievals that do not account for these effects (Battaglia

15 JULY 2019 BERRY ET AL . 4147



et al. 2007; Haynes et al. 2009). Correcting for multiple

scattering in convection is highly uncertain (Matrosov

et al. 2008). Furthermore, the presence of supercooled

liquid in deep convection produces dense graupel and hail

particles, whichmake the typical assumptions in ice-cloud

retrievals invalid (Delanoë and Hogan 2010). Therefore,

we focus our discussions on upper-tropospheric ice-phase

(hereafter, cirrus) clouds because we are interested in

their unique role in the radiation budget and cloud

feedbacks, and for which the retrieved microphysics are

more certain (Deng et al. 2013).

b. Model

We examine model output from the National Center

for Atmospheric Research (NCAR) CAM5. The model

was run globally for 2005–08 in a standard climate con-

figuration using observed sea surface temperatures and

observed sea ice fraction. The simulation operated

with a horizontal resolution of 1.98 3 2.58, 30 vertical

levels, and a physics time step of 30 min.

Stratiform cloud microphysics are represented by a

two-moment scheme that predicts the mixing ratio and

number concentration for four hydrometeor species in-

cluding cloud water, cloud ice, rain, and snow (Morrison

and Gettelman 2008). From the shallow (Park and

Bretherton 2009) and deep (Zhang and McFarlane

1995) convection schemes, detrained condensate is

added to cloud liquid and ice using the detrained mass

with an assumed mean volume radius (8mm for liquid

and 32mm for ice) to estimate number (Neale et al.

2010). A simple linear partition between liquid and ice

over the range of 2108 , T , 2408C is used for de-

trained condensate.

The simulation of ice cloud allows for supersaturation

with respect to ice and nucleation by aerosol particles

(Gettelman et al. 2010). The ice-cloud fraction is cal-

culated using relative humidity based on total ice water

(ice mass plus vapor) mixing ratio. The autoconversion

of cloud ice to snow occurs at a threshold diameter of

200mm.

The radiation scheme used in CAM5 is the Rapid

Radiative Transfer Model for GCMs (RRTMG; Iacono

et al. 2008; Mlawer et al. 1997). Aerosols are a prog-

nostic variable and their radiative effects are included in

the clear-sky and cloudy calculations. Vertical cloud

fraction and precipitation are diagnostic variables.

As an example of the CAM5 data, Fig. 1 shows cloud

and atmospheric properties for a particular grid box,

which is typical of Southeast Asia. Characteristic of this

region, the cloud fraction is high throughout the upper

troposphere. The freezing level is located around 5km,

and the cloud microphysics indicate that there is no

liquid present above 6km.

c. Model–observation comparison

There are a few considerations for making the most

direct comparison between the satellite data and model

output. First, we analyze the same geographic domain

and time of year in the historical run of the model.

Second, we try to more closely match the time and

horizontal space resolution of the CloudSat data. We

examine 3-hourly instantaneous output around the time

of the satellite overpass (0130 and 1330 UTC), which is

especially important for the diurnal cycle of clouds and

shortwave radiative effects. For ice clouds, we include

all ice species from the model (cloud ice and snow) for

an equivalent comparison with the CC data, which does

not distinguish separate ice species (Waliser et al. 2009).

Given that the spatial resolution of CAM5 is quite

different from CC, with variables representing the av-

erage conditions over a comparatively large area, we

would not expect the same variability in themodel cloud

properties compared toCC. And since the gridbox cloud

properties (vertical cloud fraction, microphysics, and

radiation) are the result of a mixture of clouds that are

combined together, the radiative fluxes and cloud radi-

ative effects fromCAM5 cannot readily be parsed to the

contributions from specific cloud types. To account for

these differences and make a more consistent compari-

son with CC, we employ a sampling technique to ap-

proximate the subgrid statistics in a manner that has

become common in model–measurement comparison

studies (Jakob and Klein 1999; Collins 2001). For ex-

ample, using 100 subcolumns and a maximum-random

overlap assumption, a gridbox cloud fraction of 40% at

5 km would result 40 out of 100 subcolumns containing

cloud at that level. The microphysical properties as-

sociated with cloudy layers remains the same at a given

height across the subcolumns. Doing this for each

model layer then yields 100 subcolumns with varying

amounts of cloud. For the subcolumns, single-layers

are identified using the cloud fraction profile (0 5 no

cloud, 1 5 cloud). When only one cloud layer is iden-

tified in the vertical, we consider that subcolumn to

contain a single-layer cloud. Figure 2 shows the re-

sulting microphysical profiles for 100 subcolumns be-

longing to the grid box shown in Fig. 1. It can be seen

that creating the subcolumns for this grid box results

in a cloud scene containing mostly single-layer cirrus,

along with a small fraction of deep-layer cloud. The

effective radius in Fig. 2 highlights the cloud vertical

structure, with the smallest ice crystals at cloud top

transitioning to larger ice crystals near cloud the cirrus

cloud base, and liquid drops below the freezing level.

Next, using these subcolumns of cloud properties and

the CAM5 atmospheric profiles of temperature T and
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humidity q, we compute the radiative fluxes separately

for each subcolumn.

Another method for comparing model and observed

clouds is to use a satellite simulator to simulate the sat-

ellite retrieval of modeled clouds. The COSP satellite

simulator for CC satellites (e.g., Bodas-Salcedo et al.

2011) is available in CAM5, and performs much of the

same subsampling that our cloud generator does, as well as

screening clouds by what the satellite might see. To de-

termine if CAM-COSP (CloudSat1CALIPSO simulator)

was needed, we compared maps of monthly mean cloud

fraction from CC, CAM5-Subsampled (100 subcolumns

from each grid box), and CAM-COSP (CloudSat1
CALIPSO simulator). We found that the difference in

total cloud fraction between CAM5-Subsampled and

CAM-COSP (CloudSat1CALIPSO simulator) was

only 1% (79% and 78%, respectively). Since there was

little difference betweenCAM5-Subsampled andCAM-

COSP (CloudSat1CALIPSO simulator), and CAM-

COSP (CloudSat1CALIPSO simulator) did not match

the observations more closely, we concluded that not

using COSP (CloudSat1CALIPSO simulator) and

FIG. 1. CAM5 thermodynamics and cloud properties for a given grid box at 16.118N, 120.08E on 2 Sep 2007. (top left to top right) Cloud

fraction, temperature and specific humidity. (bottom left to bottom right) Cloud water content, effective radius, and visible extinction.

Liquid and ice microphysical properties are shown in black and red lines, respectively. Radiative flux values (Wm22) are noted at top.
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applying our subcolumn method was sufficient for ap-

proximately the variability of clouds observed by CC. It

is important to note that while the kernels developed in

this study are representative of the instantaneous re-

lationship between the cloud and radiation, our ap-

proach of comparing the monthly mean cloud fields to

demonstrate that a satellite simulator is not necessary is

still valid, given that our results will show that the dif-

ferences in the mean cloud radiative effects are domi-

nated by the differences in cloud fraction and not the

kernels. In addition, we are sampling the model near

satellite overpass times to minimize any differences

between model and observations due to diurnal-cycle

effects.

d. Radiation

The retrieved and predicted cloud microphysical

properties (water content and re) from CC and CAM5

are, respectively, used to calculate the cloud radiative

properties that then serve as inputs for the radiative

transfer model. For CAM5, we include all ice species

(ice cloud and precipitating ice or snow) in the calcula-

tion of the radiation, which has been shown to be im-

portant (Waliser et al. 2011; Li et al. 2014). The ice water

content is then the combined contribution from ice

cloud and snow. The ice-cloud effective radius and snow

radius (diameter/2) are weighted by their respective

masses and then averaged to obtain the mean ice ef-

fective radius at each model level. We use this ice ef-

fective radius to calculate the generalized effective size

following Fu (1996). When the generalized effective size

exceeds the maximum size for the parameterization of

the ice radiative properties, based on the field data used

in Fu (1996) and Fu et al. (1998), it was set to amaximum

value of 120mm.

The cloud radiative properties (single-scattering al-

bedo, optical depth, and asymmetry parameter) are

determined using parameterizations for liquid cloud

(Slingo 1989; Kiehl et al. 1998) and ice cloud (Fu 1996;

Fu et al. 1998). The solar and infrared radiative fluxes

are calculated with a two-stream rapid radiative transfer

model that uses the k-distribution method and corre-

lated-k assumptions (RAPRAD; Toon et al. 1989; Kato

et al. 2001; Mlawer et al. 1997). The clear-sky fluxes for

each profile/subcolumn are calculated by setting the

cloud amount to zero. It is worth noting that obtaining

the clear-sky fluxes in this manner can produce a nega-

tive bias in the clear-sky longwave flux up to several

watts per square meter (Kato et al. 2013). However, we

are using the same approach to determine the clear sky

for both the observational and model datasets, so

the model–observation comparison is not affected. The

cloud radiative effect is obtained by differencing the

all-sky and clear-sky fluxes. Using this methodology,

regional bias errors in cloud radiative effect, when av-

eraged on monthly time scales, are estimated to be

5–10Wm22 (Mace 2010).

Figure 3 shows the integrated water path, optical

depth, and calculated radiative fluxes for the sub-

columns presented in Fig. 2. We find a considerable

range in cloud properties and radiative fluxes for the

subcolumns within this model grid box. The majority of

the subcolumns contain thick cirrus. These cirrus layers

tend to have an IWP around 100 gm22 and optical depth

near 3, producing 250Wm22 reflective shortwave and

140Wm22 outgoing longwave radiation. About 15% of

the subcolumns contain deep-layer cloud. By compari-

son, the deep-layer cloud has a total water path (TWP)

around 500 gm22 and optical depth near 70, resulting in

substantial reflected shortwave energy (;750Wm22)

and 130Wm22 of outgoing longwave radiation. The

mean reflected solar is 359Wm22 and the mean out-

going longwave is 133Wm22 for the 100 subcolumns in

this case study. For reference, the CAM output for this

case study grid box shows 339Wm22 reflected solar and

128Wm22 outgoing longwave.

A statistical comparison of our calculated radiative

fluxes to the CAM5 internally generated radiative fluxes

is shown in Fig. 4. We determine the average radiative

fluxes for the 100 subcolumns within each grid box (from

FIG. 2. (middle) Total in-cloud water content and (bottom) ef-

fective radius for the 100 CAM subcolumns created from the grid

box presented in Fig. 1. (top) The study domain, with the red

square highlighting the location of the grid box. Also noted is the

date and time for this case study.
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RAPRAD) and compare that to the CAM5 gridbox

radiative fluxes (from RRTMG). To calculate the radi-

ative fluxes for the model subcolumns, we are using the

model values of cloud microphysics (water content and

re) and atmospheric properties (T and q). However,

differences in atmospheric constituents, surface prop-

erties, and parameterized radiative properties can con-

tribute to differences between the subcolumn calculated

mean radiative fluxes and the CAM5 gridbox radiative

fluxes. As shown in Fig. 4, we are able to reproduce the

mean CAM5 radiative fluxes sufficiently enough to

characterize the cloud radiative effects in this region.

While there is a fair amount of scatter, indicated by the

root-mean-square errors (RMSEs), the biases for the

radiative fluxes are nearly negligible. For example,

considering the daytime net solar flux at the TOA

(Fig. 4c), we find that our calculated radiative fluxes tend

to have slightly less reflection overall compared to

CAM5 (bias of 3Wm22) although the spread at any

given point can be much larger. This bias also seems to

vary as a function of net solar, where scenes with large

net solar (.1000Wm22), typically representative of

cirrus, actually show a negative bias. For net cloud ra-

diative effect (Fig. 4g) the agreement is best for scenes

with positive radiative effects, owing partly to the lack of

solar fluxes at night time. Overall, despite some differ-

ences for individual cases, we find good correlation be-

tween our calculated radiative fluxes for the model

subcolumns, and the CAM5 gridbox radiative fluxes.

e. Creation of cloud radiative kernels

The cloud radiative kernel K, as introduced by

Zelinka et al. (2012), gives the sensitivity of the TOA

fluxes R to changes in cloud fraction C following

K5
›R

›C
.

The cloud radiative kernel (Wm22%21) is a function of

CTP and t. The model-based cloud radiative kernels

created by Zelinka et al. (2012) are derived from syn-

thetic single-layer clouds at each CTP–t bin value and

use mean T and humidity profiles averaged from several

CoupledModel Intercomparison Project (CMIP; Taylor

et al. 2012) models. We set re at 10mm for liquid and

30mm for ice (cloud top T , 263K). Using a radiative

transfer model, the fluxes are calculated with the given

cloud properties (CTP, t, and re) at each corner of the

cloud-type bin, and then averaged to obtain the TOA

flux for that cloud type. The clear-sky fluxes are calcu-

lated by removing the cloud, and the cloud radiative

effect results from differencing the clear and overcast

fluxes. Last, the cloud radiative effect matrix is divided

by 100 to yield the change in TOA radiation per change

in cloud fraction.

Since the cloud radiative kernel method was in-

troduced, variations on it have followed. Zhou et al.

(2013) created a cloud radiative kernel for calculating

cloud feedback from observations in the samemanner as

Zelinka et al. (2012), only substituting ERA-Interim

atmospheric variables. Zhou et al. (2014) created a cir-

rus cloud radiative kernel that allowed for the effective

particle diameter to vary as a function of cloud-top

temperature. Using CALIPSO observations over a 6-yr

period, they calculated the cirrus cloud feedback. Zhou

et al. (2014) found an increase in cirrus cloud amount

and altitude, producing an overall positive cirrus cloud

feedback.

Yue et al. (2016) created multiple versions of long-

wave cloud radiative kernels from A-Train satellite

observations. An observation-based longwave K was

created directly from radiative fluxesmeasured byClouds

and the Earth’s Radiant Energy System (CERES),

bypassing the need to calculate radiative fluxes

FIG. 3. The radiative fluxes and integrated microphysics for the

model subcolumns created from the grid box shown Fig. 1. (top to

bottom) Reflected solar at TOA, outgoing longwave at TOA, total

in-cloud water path, optical depth, and net cloud radiative effects

for the TOA, surface (SFC), and atmosphere (ATM).
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and assume cloud properties. A calculated longwave K

was created using averaged cloud properties (t, re, CTP)

from the Moderate Resolution Imaging Spectroradi-

ometer (MODIS) instrument and a radiative transfer

model. The observed and calculated cloud radiative

kernels showed very similar patterns for optically thick

and high clouds. However, given that MODIS under-

estimates the detection of optically thin clouds, the

observed K showed a larger TOA radiative sensitivity

than their calculated K.

In this study, we create observation-based cloud ra-

diative kernels similar to the latter approach of Yue

et al. (2016), with cloud properties (water content and re)

derived fromCC and atmospheric properties (T, q) from

ECMWF-AUX. In addition, we create a model-specific

cloud radiative kernel in a similar manner, with cloud

FIG. 4. Comparison of radiative fluxes (Wm22) fromCAM5 output and calculated subcolumns for the study domain from June through

September 2007 and 2008 (141 032 data points). (a) Clear-sky net shortwave flux at TOA (only daytime values). (b) Clear-sky out-

going longwave radiation at TOA. (c) All-sky net shortwave flux at TOA (only daytime values). (d) All-sky net longwave flux at TOA.

(e)–(g) The shortwave (including day and night), longwave, and net cloud radiative effects, respectively. Noted below each panel are

the average flux values from the subcolumn means and grid boxes. Bias and root-mean-square error (RMSE) are defined as calculated

fluxes minus CAM output.
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properties (water content and re) and atmospheric

properties (T, q) from CAM5. Then the same radiative

transfer scheme is used to obtain the radiative fluxes for

the clouds observed by CC and the clouds simulated by

CAM5. Similar to Zelinka et al. (2012), our cloud radi-

ative kernels are derived from single-layer clouds.

However, the cloud radiative effect in each cloud-type

bin is an average cloud radiative effect from many pro-

files of single-layer clouds with varying cloud properties

(t and re) within the bin boundaries, as opposed to one

prescribed value. The kernels are calculated by dividing

the average cloud radiative effect by 100% cloud cover

(cloudy profiles are assumed overcast). Our observation-

based and model-specific kernels are derived from their

respective atmospheres and cloud properties, but use the

same parameterization for radiative properties (Slingo

1989; Kiehl et al. 1998; Fu 1996; Fu et al. 1998) and ra-

diative transfer model (Toon et al. 1989; Kato et al. 2001;

Mlawer et al. 1997). Hence, we allow for there to be dif-

ferences in the sensitivity of the TOA radiation between

the observation-based K and model-specific K due to

differences in cloud properties but not in the treatment of

the radiative properties or the radiative flux calculations.

We use our cloud radiative kernels to calculate the

cloud radiative effects in the observations and model,

following

R5KC ,

where C is the histogram of cloud fraction as a function

of cloud-top height (CTH) and t, and R gives the con-

tribution of each cloud type to the TOA radiation

(Wm22). Therefore, R is a function of the cloud radia-

tive kernel and cloud amount. Differences between our

observed and modeled cloud radiative effects can arise

from differences in the kernel, cloud fraction, or both.

The advantage of using the kernel approach is that we

can separately evaluate the cloud radiative kernel and

cloud fraction for individual cloud types, and quantify

how discrepancies in those separate sources of uncer-

tainty lead to differences or agreement (through com-

pensating effects) in cloud radiative effects. In particular,

by separately considering the radiative kernel and cloud

fraction, we are able to identify compensating errors in

the model.

3. Results

a. Cloud occurrence

In Berry and Mace (2014), we examined radar–lidar

cloud occurrence statistics in the Southeast Asia region,

with some important and relevant findings. The vertical

cloud frequency of occurrence is dominated by clouds in

the upper troposphere. A classification of cloud layers by

base-height and/or geometric thickness indicates distinct

maxima for high-level cloud types, with a prevalence of

tropical tropopause cirrus and tropospheric cirrus likely

associated in some way with convective detrainment.

Radar reflectivity values indicate roughly 1/3 of the hy-

drometeor volumes in themiddle troposphere are parts of

deeper layers that contain precipitation.

In this study we seek to compare the cloud occurrence

statistics from CC observations with CAM5 model

output during the summer monsoon (June–September

2007–08) in Southeast Asia (58S–258N, 808–1208E). In
total, we consider 2.0 millionCloudSat profiles, of which

just over 940 000 (47%) contain single-layer clouds,

800 000 (40%) contain multiple cloud layers (i.e., clear

sky separating two or more cloud layers in the vertical)

and 260 000 (13%) are clear. For CAM5, our dataset

contains 12.0 million subcolumns, of which just over 4.9

million (41%) contain single-layer clouds, 4.6 million

(38%) contain multiple cloud layers, and 2.5 million

(21%) are clear. Our sample size for CC is smaller than

CAM, because CC provide a curtain of data, while the

model provides output for the whole domain at the

overpass times of approximately 0130 and 1330 UTC.

The cloud fraction (C) histograms for single-layer

clouds in the observations and model are compared in

Fig. 5 and summarized in Table 1. We find relatively

good agreement in the overall single-layer cloud frac-

tion, with single-layer clouds accounting for 47% of all

the profiles in the observations and 41% of all sub-

columns from the model. In terms of cloud-top height,

the single-layer cloud fraction is dominated by high-

topped clouds in both the model and observations. In

terms of optical depth, optically thin layers occur most

frequently, while optically thick layers occur least fre-

quently in both the models and observations.

The decomposition of single-layer cloud fraction by

cloud type (Fig. 5) highlights some differences between

the observations and model. The largest differences in

cloud type occur for low clouds, and clouds with mod-

erate optical depths (Table 1). The details reveal that the

model produces fewer single-layer low clouds (5%)

compared to that observed by CC (9%). Evidence of

these differences can be seen by examining the indi-

vidual cloud types. In terms of optical depth, the model

produces a greater fraction of single-layer cirrus (18%)

and smaller fraction of cirrostratus (6%), compared to

CC, which observes a cirrus cloud fraction of 15% and a

cirrostratus cloud fraction of 9%.CC also observesmore

than double the amount of single-layer stratocumulus

(6%) compared to CAM5 (3%).

Considering all cloudy profiles (single and multiple

cloud layers), CC observe a total cloud fraction of 87%
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in the Southeast Asia region (58S–258N, 808–1208E),
which agrees well with previous seasonal estimates for

this region (Mace et al. 2007; Hong and Liu 2015).

Multiple cloud layers are present in 40% of all CC

profiles. The total cloud fraction in CAM5 is quite a bit

lower, at 79%, with 38% of all subcolumns containing

multiple cloud layers. Too few low clouds in CAM may

partially explain the difference in total cloud fraction,

given that CAM has less single-layer low cloud thanCC.

A cloud-type analysis of all cloud layers (single and

multiple cloud layers) in the region is shown in Fig. 6 and

summarized in Table 2. Relative to all cloud layers, CC

observe a greater fraction of middle-cloud layers (31%),

compared to the model (27%). For high clouds, the

model observes much more (.3 times) cirrus than

cirrostratus, especially compared to CC. A plausible

explanation for this apparent shift in high-cloud type

may be differences in cloud microphysics (e.g., larger

particles in the model), which may be investigated in a

future paper. In terms of optical depth, CC observe a

TABLE 1. Occurrence frequencies (%) for single-layer clouds

in observations and the model, following CTH–t cloud-type

definitions.

Cloud type CloudSat/CALIPSO CAM5

High 32 30

Middle 6 6

Low 9 5

Thin 19 20

Intermediate 18 11

Thick 10 10

FIG. 6. Distribution of all cloud layers (including single and

multiple cloud layers). The relative fraction (%) of eachCTH–t cloud

type is noted in the bins.

FIG. 5. Fraction of single-cloud layers. The fraction (%) of each

CTH–t cloud type is noted in the bins.

4154 JOURNAL OF CL IMATE VOLUME 32



smaller fraction of optically thick clouds (17%) com-

pared to CAM (22%). Note there are very few satellite

observations of optically thick, lower-topped cloud

layers in this region—what would normally be classified

as nimbostratus and stratus in the ISCCP parlance.

b. Cloud radiative kernels

The cloud radiative kernels show the sensitivity of the

TOAradiation to changes in cloud fraction.Qualitatively,

the kernels represent cloud radiative processes. For ex-

ample, the TOA longwave kernel is entirely positive, in-

dicative of column warming resulting from the reduced

longwave emission from columns with cloud tops of lower

temperature than what would be realized by cloud-free

columns. The TOA shortwave kernel is entirely negative,

indicative of the reflection of shortwave radiation by all

clouds relative to a lower albedo surface. The result of

these competing longwave and shortwave effects is shown

in the TOA net radiative kernel.

In this study we create observation- and model-

derived cloud radiative kernels, which are calculated

from data of each single-layer cloud type as described

above. In this sense, the radiative effects are an average

over the varying range of clouds that occur in a given

cloud-type bin, instead of one prescribed cloud as in

Zelinka et al. (2012) and Zhou et al. (2013). Quanti-

tatively, in our implementation, the magnitude of the

radiative kernels depends on the cloud statistics (mac-

rophysics, microphysics, temporal characteristics) within

a given cloud type.

The LW, SW, and net cloud radiative kernels for CC

and CAM5 are presented in Fig. 7. Overall, there is very

good agreement for the LW cloud radiative kernel,

which shows warming effects increasing with cloud-top

height and optical depth, from 0.03Wm22 %21 for the

lowest and thinnest cloud up to;1.4Wm22 %21 for the

highest and most optically thickest cloud. This spread in

the LW cloud radiative kernels across cloud types falls

within the observed range of the LW cloud radiative

kernels in Yue et al. (2016, their Fig. 6). The largest

difference in the LW cloud radiative kernel occurs for

altocumulus, with the observations showing a stronger

warming effect, indicative of higher cloud tops within

this cloud-type bin.

The SW cloud radiative kernels in Fig. 7 show cooling

effects increasing with optical depth, with the exception

of observed stratus, which is discussed further below.

For optically thin clouds (t, 3.6), the shortwave cooling

ranges from 20.2 to 20.6Wm22 %21 and the obser-

vations and model show good agreement. The largest

differences in the SW cloud radiative kernel occur for

optically thick clouds (t . 23), with the model showing

more cooling compared to the observations. Overall, the

magnitude of the shortwave cooling tends to be a bit

larger compared to the global and annual mean SW

cloud radiative kernel presented in Zelinka et al. (2012,

their Fig. 1b), given that we are focused only on the

tropical summer. In addition, for any specific cloud type

we may expect some differences compared to Zelinka

et al. (2012), given our differences in our kernel meth-

odology. For example, the deep convection in our CC

and CAM5 results may have stronger cooling simply

because the population of clouds is weighted more to-

ward larger optical depths within the cloud-type bin,

compared to the averaged synthetic clouds used in

Zelinka et al. (2012).

The cloud radiative kernels represent the average

cloud radiative effects from the distributions of clouds

within the cloud-type bins. Figures 8 and 9 show these

PDFs of TOA net cloud radiative effects (CRE) within

each single-layer cloud-type bin, with daytime and

nighttime effects separated. The PDFs in Figs. 8 and 9

show the wide range of CREwithin each cloud-type bin,

which are averaged and divided by 100% to obtain the

TOA net cloud radiative kernels shown in Fig. 7. In

addition, given the twice daily (;0130 and 1300 UTC)

samples in our dataset, a diurnal variation of cloud

fraction for a particular cloud type will impact the cloud

radiative kernel. For instance, the largest discrepancies

between the model and observations in the cloud radi-

ative kernels (Fig. 7) are for stratus clouds, with CC

showing a very modest cooling compared to CAM5.

However, we find that this is explained by a diurnal

difference in the stratus cloud fraction, with nearly all

(93%) of the CC-observed stratus occurring during the

nighttime overpass. This is similarly true for deep con-

vection and nimbostratus clouds, in terms of CC

observing a higher fraction at night, leading to a warmer

mean net CRE, compared to CAM5. It is interesting

that CAM5 observes a higher fraction of daytime opti-

cally thick clouds, compared to CC. Typically the di-

urnal cycle of monsoon rain peaks in the late afternoon/

early evening over land. We have examined the CAM5

diurnal cycle of precipitation using data from the

TABLE 2. Relative frequencies (%) of cloud types from all cloud

layers in observations and the model, following CTH–t cloud-type

definitions.

Cloud type CloudSat/CALIPSO CAM5

High 51 50

Middle 31 27

Low 18 23

Thin 46 45

Intermediate 37 33

Thick 17 22
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Tropical Rainfall Measuring Mission satellite, and do

find that it peaks a couple hours earlier than the obser-

vations over land in the monsoon region. It is plausible

that an earlier peak in the diurnal monsoon cycle in the

model is causing more optically thick clouds to be present

near the 1330 UTC overpass time. However, if we com-

pare the daytime-only mean values, we find much better

agreement between the observations and model for the

optically thick clouds than suggested by the cloud radia-

tive kernel because of differences in the occurrence

of cloud types. In fact, for both CAM5 and the CC

observations, deep convection, nimbostratus, and stratus

have a daytime median CRE of 2500Wm22.

Using the daytime mean and nighttime mean CRE

values (as in Figs. 8 and 9), we can create cloud radiative

kernels that assume that each single-layer cloud type is

equally likely to occur at the daytime overpass as it is at

the nighttime overpass (not shown), instead of the actual

day/night fractions in the observations and model. When

we remove the effects of the diurnal variations in cloud

fraction in this way, we findmore agreement betweenCC

and CAM5 and more agreement with the cloud radiative

FIG. 7. (top) Longwave, (middle) shortwave, and (bottom) net cloud radiative kernels (based on single-layer

clouds) for (left)CC and (right) CAM. Themean cloud radiative kernel value (Wm22%21) is noted in each cloud-

type bin. Assuming overcast skies, multiply themean kernel value by 100% to obtain the cloud-type cloud radiative

effect (Wm22).
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kernels presented in Zelinka et al. (2012). Hence, some

of the differences in the observation-based and model-

based kernels (Fig. 7) are attributed to differences in

the day-to-night ratio of clouds, and not attributed to

actual differences in the radiative effects of daytime

and nighttime clouds. Assuming an equal day and night

cloud fraction leads to a more consistent shortwave

cooling across cloud-top-height bins within a given

t bin and shows that the strongest net cooling occurs

for the most optically thick and low clouds like Zelinka

et al. (2012).

For the low-cloud types cumulus and stratocumulus,

the daytime PDFs of CRE (Fig. 9) show that CAM5

tends to have a stronger cooling effect, compared to CC

(Fig. 8). In addition, CAM5 has a smaller fraction of

single-layer low clouds, as shown in Table 1. Taken to-

gether, our findings here show some evidence of the

‘‘too few (Table 1), too bright (Figs. 7–9)’’ tropical low-

cloud bias in models (Nam et al. 2012).

For ice clouds, we find quite good agreement in the net

cloud radiative kernel between CAM5 and CC observa-

tions. In both themodel and observations, cirrus produce an

overall warming effect between 0.39 and 0.48Wm22 %21.

Although if we look at the individual longwave and short-

wave components, we find larger differences that have

partially offset each other to give a similar result in the net.

FIG. 8. The distribution of TOAnet cloud radiative effect within each single-layer cloud-type bin forCC (black), the daytime-only cloud

radiative effect (blue), and the nighttime-only cloud radiative effects (red). The mean and median CRE values are noted for each curve,

along with the relative frequency of day and night values.
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The cirrus in themodel tend to have aweaker longwave and

shortwave effect compared to the CC observations. For

cirrostratus (3.6, t, 23), the solar cooling becomes larger

than the longwave warming, resulting in a net cooling in

the observations and model. This transition from net

warming with cirrus (t , 3.6) to net cooling with cirro-

stratus is in good agreement with Hong and Liu (2016),

who found that the crossover from positive to negative

CRE for ice clouds occurs at an optical depth of 4.6.

Overall, the CAM5 net cloud radiative kernel shows

relatively good agreement with CC for high and low

clouds with optical depths less than 23 (cirrus, cirro-

stratus, cumulus and stratocumulus). The middle clouds

(altocumulus, altostratus, and nimbostratus) show large

differences, which is likely related to the small sample

sizes of these cloud types. The optically thick clouds also

show large differences, owing in part to the wide range

of clouds that can exist in that cloud-type bin (23 , t ,
380). Overall, the good agreement for the most com-

monly occurring high (cirrus and cirrostratus) and low

(cumulus and stratocumulus) cloud types tells us that the

model is making clouds that are reasonably character-

istic of the real atmosphere.

c. Cloud radiative effects for single-layer clouds using
the kernel technique

Multiplying the cloud occurrence matrix by the radi-

ative kernel matrix (C3K) gives the cloud radiative

FIG. 9. The distribution of TOA net cloud radiative effects within each single-layer cloud-type bin for CAM5 (black), the daytime-only

cloud radiative effects (blue), and the nighttime-only cloud radiative effects (red). The mean and median CRE values are noted for each

curve, along with the relative frequency of day and night values.
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effects for the single-layer clouds layers in this region.

Hence the resulting cloud radiative effect depends on

both the amount of cloud and the sensitivity of the ra-

diation to the clouds. Therefore, agreement or differ-

ences between the model and observed cloud radiative

effects can be due to differences in the cloud radiative

kernels and/or differences in cloud fraction.

The LW, SW, and net CRE for single-layer clouds is

shown in Fig. 10. For the LW CRE, we find more

warming for clouds observed by CC (37Wm22 overall)

compared to clouds produced by CAM5 (30Wm22

overall). This difference is linked to cirrostratus and

deep convection, which occur less frequently in CAM5

and with a slightly smaller longwave sensitivity com-

pared to CC. A consensus exists for the cirrus LW CRE

despite some differences, mainly because the higher

fraction of cirrus in the model is tempered by a weaker

longwave sensitivity.

For the shortwave CRE, we find good agreement

overall, with the model and CC demonstrating a total

cooling from 254 to 255Wm22. The largest difference

is for nimbostratus, which produces a much larger

cooling effect in the model. For nimbostratus, the dif-

ference in SW CRE is both due to a difference in cloud

fraction, given this cloud type is infrequently un-

observed by CC, and due to a difference in SW cloud

FIG. 10. (top) Longwave, (middle) shortwave, and (bottom) net radiative effect of single-layer clouds [the

product ofC (Fig. 5) andK (Fig. 7)]. The contribution of individual cloud types (Wm22) to the total CRE for single-

layer clouds is noted in each bin. The sum of the bin values is noted in the title of each panel.
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radiative kernel, with the model having a stronger

shortwave sensitivity to this cloud type. Stratocumulus,

however, exert a stronger cooling in the observations

(27Wm22) compared to CAM5 (24Wm22), owing to

the larger (2 times) fraction of this cloud type in the CC

observations.

Overall, we find cooling for the TOA net CRE,

with 218Wm22 from the observations and 224Wm22

from the model. Much of this difference is primarily

explained by nimbostratus cloud, which exhibits signif-

icant differences in diurnal cloud fraction and SW

cooling. While for the optically thin and intermediate

cloud types, we generally find good agreement in net

CRE for the observations and model.

In particular, the net CRE for cirrus cloud types shows

good similarity for the model and observations. It is

cirrus (with the highest top and smallest optical depth)

that produce the greatest warming in both the CC ob-

servations and CAM5. In addition, the model and ob-

servations agree on the magnitude of this warming, with

single-layer cirrus producing a net warming of 7Wm22.

Cirrostratus clouds, with a larger optical depth, have a

near neutral radiative effect in both the observations

and model, given that their SW and LW CRE are of

similar magnitude. These results are similar toHong and

Liu (2016), who also found a near-zero net effect for ice

clouds with 3, t , 20, along with a global net ice-cloud

CRE of 4Wm22. Such good agreement between the

observations andmodel for these ice-only cloud layers in

this region during the summer monsoon is especially

noteworthy.

4. Discussion

Zelinka and Hartmann (2010) describe a logical re-

sponse of high clouds to a warming climate (PHAT

hypothesis), and GCMs show consensus for a positive

LW high-cloud feedback that is consistent with theory

(Soden and Vecchi 2011). What has not been known is

the degree to which the ice clouds (properties and ra-

diative heating) in models replicate what is found in

nature. Our goal in this study has been to apply the ac-

tive remote sensing of CC to address this issue.

Are simulated ice clouds heating the atmosphere in a

manner similar to what is observed in the real atmo-

sphere? We have answered this question in the affir-

mative (at least for the SoutheastAsia summermonsoon

region) with observation-based and model-specific

cloud radiative kernels. In both the observations and

model, we find that it is the optically thin (t , 3.6) ice

clouds that are responsible for heating. Additionally, we

find that the net heating for this cloud type for a change

in cloud fraction is of similar magnitude between the

model and observations, ;0.4–0.5Wm22 %21. For ice

clouds with t . 3.6, the solar effects become larger than

the LW effects, producing a similar net cooling in both

the CC observations and CAM5.

To what extent do simulated clouds reproduce radi-

ative effects like those exhibited in the CC observa-

tions? The answer to this question depends on both the

sensitivity of the TOAfluxes to changes in cloud fraction

(aka, the cloud radiative kernel K) and the existing

cloud amount C. We find that the LW CREs produced

by CAM5 are very similar to the observations for all

single-layer cloud types. In the SW, there is generally

good agreement in CRE for the optically thin and in-

termediate clouds, while the optically thick clouds in

CAM5 have a stronger cooling effect than the obser-

vations. In the net CRE there is remarkably good

agreement for the cirrus cloud types, with the optically

thin cirrus producing an overall warming effect of

7Wm22 and cirrostratus (3.6 , t , 23) producing an

overall weak cooling effect of 22Wm22 in the obser-

vations and CAM5.

Figure 11 shows single-layer cirrus (cirrus and cirro-

stratus) cloud properties and calculated radiative effects

as a function of IWP for the model subcolumns and

observations. Versions of the observational figures are

also shown in Berry andMace (2014), and these, in turn,

were motivated by findings reported in Ackerman et al.

(1988, their Fig. 13). We find strong similarities in the

distributions of IWP for single-layer cirrus clouds in the

observations and model. The distributions of the IWP

are highly skewed, with a mean IWP ;115 gm22 and a

median value of 40 gm22. Examining the LW, SW and

net TOA CRE as a function of IWP, we see generally

similar behavior between the observations and model,

with the crossover from net positive CRE to net nega-

tive CRE occurring at an IWP of 150 gm22 in both da-

tasets. Weighing the TOA net CRE for each IWP bin by

the frequency of occurrence of a given IWP, we find that

single-layer cirrus layers contribute a net warming

of ;5Wm22 to the total TOA net CRE and that cirrus

with an IWP near 20 gm22 are most important radia-

tively in both the observations and model.

In terms of assessing high clouds in models, our results

suggest studies that use mean properties (i.e., mean

IWP) as a metric for evaluating simulated ice clouds are

misguided at least in terms of assessing TOA radiative

effects. An emphasis on the mean IWP is not relevant to

the TOA radiative balance for either the observation or

model, given the skewed nature of the IWP distribution.

The mean IWP tends to be more characteristic of an

optically thick ice cloud, and not representative of the

more commonly occurring ice clouds with smaller IWPs

that seem to characterize the TOA net radiative effects.
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On the implications for understanding simulated high-

cloud feedbacks, our results suggest that the radiative

effects of present-day tropical ice clouds in CAM5 are

being realistically portrayed. This accurate initial con-

dition for cirrus lends some credibility to the positive

LW feedback found in many GCMs that is associated

with the PHAT hypothesis and rising tropical ice clouds.

If the LW CRE of cirrus increased at the TOA (all else

remaining the same), the LW curve in Fig. 11b would

have a larger magnitude, and the crossover point for the

Net CRE curve would shift toward larger IWPs. Hence,

while cirrostratus exhibit a near neutral/slightly negative

net CRE as shown in Fig. 10, there is the potential for

cirrostratus clouds to contribute a warming effect in a

warmer Earth.

5. Summary

In this paper, we present a comparison of clouds and

their radiation effects from CC observations and a

CAM5 simulation during two monsoon periods in

Southeast Asia. In particular, we focus on evaluating the

representation of ice clouds in themodel. To accomplish

this, we take advantage of the active remote sensors in

the A-Train and their ability to observe a comprehen-

sive range of optically thin to optically thick clouds and

the vertically resolved cloud properties made possible

by the CC satellites.

Following Zelinka et al. (2012), we examine cloud

fraction as a joint function of cloud properties (CTH

and t). Cloud layers in the observations are identified

using the radar–lidar mask in the 2B-GEOPROF-lidar

CloudSat dataset, while the cloud layers in the model

subcolumns are identified using the cloud fraction in

CAM5.We would obtain similar clouds had we used the

COSP simulator forCC observations in CAM5. Overall,

high-cloud types and optically thin cloud types are most

prevalent in the CC observations and CAM5. The

single-layer cloud fraction is close to 45% in both the

observations and model, with differences appearing in

FIG. 11. Distribution of ice water path and cloud radiative effects for single-layer cirrus clouds (CTH . 9.5 km, t , 23) in (a)–(c) CC

observations and (d)–(f) CAM5. (a),(d) The corresponding PDFs of IWP, along with relevant statistics (mean and median IWP and

relative frequency of single-layer cirrus). (b),(e) TOA longwave, shortwave, and net cloud radiative kernels as a function of IWP.

(c),(f) The resulting TOA net cloud radiative effects (frequency 3 net cloud radiative kernel) and the summed net effect of all single-

layer cirrus.
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the distribution of cloud types, mainly more cirrus and

less stratocumulus in CAM5 compared to the CC ob-

servations. Including all cloudy profiles (single and

multiple cloud layers), the cloud fraction in CAM5 is

74%, which is quite a bit lower than the overall 88%

cloud fraction from the CC observations. When con-

sidering the distribution of cloud types among all cloud

layers, we find that CAM5 produces a greater fraction of

optically thin high clouds compared to the observations.

The cloud radiative kernels derived in this study are

based on populations of observed and simulated clouds,

separately. This is different from the traditional cloud

radiative kernels (Zelinka et al. 2012; Zhou et al. 2013),

which are essentially based on synthetic cloud types. The

benefit of these averaged cloud radiative kernels is that

they reflect the actual populations of clouds that exist

within the cloud-type bins, and are consistent with the

cloud fraction histograms.

Our derived cloud radiative kernels depend on the

retrieved and simulated cloud microphysical properties

(water content and re). For the observations, the ice-

cloud microphysics are obtained from the radar–lidar

retrieval in the 2C-ICE CloudSat dataset, which is

combined with a liquid-cloud retrieval below the melt-

ing level. The observed atmospheric quantities are ob-

tained from the ECMWF-AUX CloudSat dataset. For

the model, we include both in-cloud ice and snow in the

ice-cloud microphysics, and we use the atmospheric

variables in the model output. The same parameteriza-

tions are used to calculate the radiative properties from

the observed and simulated microphysics. The same

radiative transfer model is applied to all the observed

cloudy profiles and cloudy model subcolumns to obtain

the radiative fluxes and calculate the cloud radiative

effect. The cloud radiative kernels are determined by

calculating the average cloud radiative effect for a given

cloud type and dividing by 100%. This way, we can

compare the sensitivity of the TOA fluxes to changes in

cloud fraction in the observations and the model.

There are several important findings from this study.

The radiative kernels demonstrate that the model and

observations show a similar sensitivity of the TOA ra-

diation to changes in cloud fraction for most cloud types

with small and moderate optical depths, with a tendency

for stronger cooling for low clouds in CAM5. When we

account for diurnal cloud fraction differences between

the model and observations by examining daytime and

nighttime radiative effects separately, we find better

agreement for optically thick clouds than originally

suggested by the cloud radiative kernel. This suggests

that it is the diurnal cycle of convection that contributes

significantly to the CRE biases. Overall, the relatively

good agreement in daytime CRE and nighttime CRE

means that the clouds in the model are heating and

cooling like CC-observed clouds.

Multiplying the cloud radiative kernels by the cloud

fraction histograms gives the resulting CRE for single-

layer clouds. We find remarkable agreement in CRE

between CC and CAM5 for ice clouds. Both the model

and observations show that optically thin cirrus are re-

sponsible for a warming effect on the order of 7Wm22,

while cirrostratus have a slightly negative contribution

of 22Wm22. This agreement in CRE for ice clouds is

due to relatively good agreement in both cloud fraction

and cloud heating/cooling (cloud radiative kernel).

However, there are small compensating differences.

While the fraction of single-layer ice clouds is 24% inCC

and CAM5, the model produces slightly more cirrus and

less cirrostratus compared to CC (Fig. 5). Additionally,

the CAM5 cirrus produce less heating and cirrostratus

produce more cooling compared to CC (Fig. 7). These

small differences in ice-cloud fraction and cloud radia-

tive kernel counteract each other, leading to the agree-

ment in CRE (Fig. 10).

The main caveat of this study is that it focuses on a

particular region and short time frame, specifically

Southeast Asia (58S–258N, 808–1208E) during the mon-

soon months of June–September 2007–08. However, it is

reasonable to expect that these cloud-type results would

be representative of cloud types in deep convective re-

gions in the tropics. In this study, we have addressed the

effects of differences in the observed and simulated mi-

crophysics on the radiation. In the future, we plan to

examine the cloud microphysical properties individually,

in more detail. The active remote sensors in the A-Train

provide an excellent dataset for evaluating the water

content and effective radius in models. This is an impor-

tant next step, as the cloudmicrophysical properties could

be a source of compensating errors, and these quantities

play a role in processes relating to cloud lifetime.

The results in this paper have implications for our

understanding of the role of ice clouds in the climate

system and of model-predicted ice-cloud feedbacks.

We find that the current representation of ice clouds in

CAM5 is realistic in terms of radiative effects with

relatively tenuous cirrus in the 20 gm22 range con-

tributing most to their TOA radiative effects. The

agreement between the model and observations pro-

vides confidence to the predicted positive longwave

feedback associated with rising high clouds under cli-

mate warming. Assuming that the frequency distribu-

tion of tropical ice clouds remains the same and the

thermodynamics of the cirrus remains at constant

temperature (the PHAT hypothesis) as the climate

changes, we infer that this increasing LW forcing with

warming (i.e., a positive feedback) will shift the
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crossover point between warming and cooling (Fig. 11b)

to thicker ice clouds causing cirrostratus to become in-

creasingly relevant to heating at the TOA.

Of the many feedbacks in the climate system that are

reasonably understood, the ascent of tropical ice clouds

is thought to be one of the most readily observed with

the signal emerging from the natural noise of the climate

system perhaps in the next decade (Chepfer et al. 2014;

Marvel et al. 2015). It will be critical that measurement

systems are suitable to document the emergence of this

signal. As discussed in Berry and Mace (2014) and im-

plied by these results, the ice clouds involved in this

feedback occupy a particular portion of the IWP fre-

quency distribution that require both a millimeter radar

and an optical lidar to accurately characterize their

properties and occurrence. Indeed, the fortuitous

combination of the CloudSat W-band radar and the

CALIPSO lidar enabled the present work and a future

observing system with at least equivalent capabilities

will be required to document what will be the first sig-

nificant observable positive feedback in the present

evolution of Earth’s climate.
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