Using A-Train Observations to Evaluate Ice Water Path and Ice Cloud Radiative Effects in the Community Atmosphere Model

Betsy Berry and Jay Mace, University of Utah

Motivation
- Large differences exist between modeled cloud ice and observations (Li et al., 2012)
- Yet models show consensus for a positive high cloud feedback (Vecchi and Soden, 2011)
- Examine cloud radiative effects as a function of Ice Water Path (IWP)
- Which type of cirrus contribute most to heating the upper troposphere?
- Use A-Train satellite data to evaluate ice clouds in a global climate model

Data and Methods
- Focus on region of Southeast Asia during monsoon season (August + September 2007-2008)
- Geometric cloud layers identified by combined radar-lidar mask (Mace et al, 2009)
- Multiphase algorithm suite (CloudSat, MODIS, AMSRE) to derive the liquid cloud microphysical properties (Mace, 2010)
- Ice microphysical properties from the CloudSat/CALIPSO 2C-ICE dataset (Deng et al., 2010)
- Radiative properties are calculated using existing parameterizations.
- Rapid Radiative Transfer Model (RRTM; Mlawer et al., 1997)
- Outputs: profiles of shortwave and longwave fluxes

A-Train Results

Use idea of cloud radiative kernels (Zeilinza et al., 2012a) to examine the radiative impact of ice clouds at the Top Of Atmosphere (TOA)

Preliminary Model Analysis

Examine ice clouds in Community Atmosphere Model Version 5 (CAM5)
- Output from 2005-2008 global run with 30 vertical levels and a 96x144 horizontal grid (~1.9° latitude x 2.5° longitude)
- 2-moment bulk stratiform cloud microphysics scheme (Morrison et al. 2005) with four hydrometeor species
- Process-based treatment of ice supersaturation and ice nucleation (Gettelman et al., 2010)

Future Work
- Calculate the radiative properties and run the radiative transfer for the model sub-columns in Southeast Asia
- Perform cloud radiative kernel analysis with CAM5
- How do modeled ice clouds differ from observed clouds?
- Do climate models show a similar distribution of cloud ice and radiative effect?
- Use output from CAM5, run in weather forecast mode (Xie et al., 2012), to see how quickly ice cloud biases develop

Table 1. Characteristics of the most common cloud layers

<table>
<thead>
<tr>
<th>Cloud Type</th>
<th>Top Height</th>
<th>Thickness</th>
<th>Occurrence</th>
<th>Mean IWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.T.L. Cirrus</td>
<td>>14 km</td>
<td>< 3 km</td>
<td>11%</td>
<td>6 gm^-2</td>
</tr>
<tr>
<td>Thin Cirrus</td>
<td>10-14 km</td>
<td>< 3 km</td>
<td>13%</td>
<td>13 gm^-2</td>
</tr>
<tr>
<td>Thick Cirrus</td>
<td>>10 km</td>
<td>3-6 km</td>
<td>23%</td>
<td>64 gm^-2</td>
</tr>
<tr>
<td>Deep Layers</td>
<td>>10 km</td>
<td>>6 km</td>
<td>34%</td>
<td>74 gm^-2</td>
</tr>
</tbody>
</table>

Figures

- Fig. 1: A typical cloud scene in the analysis region
- Fig. 2: Sensitivity of TOA fluxes to perturbations in cloud fraction (K)
- Clouds with the highest cloud top and moderate IWP (25-90 gm^-2) produce the strongest warming effect at TOA
- For cirrus clouds with IWP > 225 g m^-2, solar effects begin to dominate over the IR effects and clouds produce net cooling
- Fig. 3: Cloud fraction (C) as a function of CTP and IWP
 - Cloud fraction decreases with increasing IWP bins
 - Mean IWP = 440 g m^-2
 - 87% of profiles are not precipitating/convective
 - median IWP = 16 g m^-2
 - “cloud mode” represents 34% of total ice mass
 - 13% of profiles are precipitating/convective
 - median IWP = 1394 g m^-2
 - “precip mode” represents 66% of total ice mass
- Fig. 4: Contribution of each cloud type to TOA radiation (R), where R = K°C
 - TOA Net Cloud Radiative Effect (CRE) from cirrus = 17 W m^-2
 - Cirrus with IWP between 3 - 90 g m^-2 contribute most to heating given their frequency
 - Sum of TOA net CRE (-11 W m^-2) indicates a near balance between commonly occurring cirrus that warm the atmosphere and less frequent deep layers that produce strong cooling at the surface.
- Due to skewed IWP distribution, the median IWP is a better diagnostic of the radiative impact for cirrus clouds than the mean IWP

Figures

- Fig. 5: Thermodynamic and cloud microphysical variables from a CAM5 grid box (latitude: 12.32°, longitude: 102.5°) in our study domain at 12Z on August 1, 2007.
- Fig. 6: Generated sub columns of cloud microphysical properties for the grid box data shown in Fig. 7.