"Using A-Train satellite data to investigate the relationship between cloud ice water path and cloud radiative effects"

Betsy Berry and Jay Mace, University of Utah Gordon Research Seminar on Radiation and Climate, 2013

Outline

- Background on region that was the focus of this study
- Cloud climatology
- Ice water path climatology
- Cloud radiative effects
- Relationship between IWP and CRE

August and September 2007 and 2008 Monsoon season

Peak in convection Over land ~ 1630 Over ocean~ 0230 (Liu and Zipser, 2008)

Why Southeast Asia? SEAC⁴RS Experiment

SouthEast Asia Composition, Cloud, Climate Coupling Study S Aircraft: ER-2, GV, DC-8

Summer 2012

Climatology of the region

Upper Troposphere

Lower Troposphere

1000mb (Jun-Sep 2002-2003)

Data

- CloudSat: radar reflectivity
- CALIPSO: lidar backscatter
- CERES: SW and LW irradiances
- MODIS: visible optical depth
- AMSRE-E: LWP

Cloud types	Top ht.	Thickness	RFO%
Thin cirrus	>10km	<3km	27%
Thick cirrus	>10km	3-6km	23%
Deep layers	>6km	>6km	33%
Thin mid	3-10km	<3km	9%
Thick mid&low	<10km	3-6km	4%
Thin low	<3km	<3km	4%

CloudSat Data Browser in Google Maps: created by Chris Galli, maintained by Quiqing Zhang

Cloud Properties

- Ice water content and ice effective radius from 2C-ICE CloudSat data product (Deng et al. 2010)
- Liquid water content and liquid effective radius derived from Z-tau algorithm during day and Z-LWP algorithm at night (Mace, 2006)

Deng et al., 2013

Ice Water Path Climatology

Remote Sensing of Ice Hydrometeors

Ice Water Path Distribution

Separate cloud and precipitating IWP following Waliser et al., 2009

- Precipitating/Convective profiles identified using the 2B-CLDCLASS-LIDAR dataset
- 22% of profiles are ice-free

Methods adopted from Mace, 2010

- Use microphysical properties (water content and effective radius) to calculate radiative properties
- Radiative transfer model (Toon et al., 1989)
- Inputs: single-scattering albedo, extinction coefficient, asymmetry parameter
- Outputs: SW and LW radiative fluxes

Deep Layer Example

Retrieved Quantities

A-Train Microphysics (Mace Algorithms) Date and Orbit: 2008231_12275 Location: Southeast Asia Start Lat/Lan: 12.3,96.1 End Lat/Lon: 18.1,94.8

A-Train Microphysics -Aqua Comparison Date and Orbit: 2008231_12275 Lacation: Southeast Asia Start Lat/Lon: 12.3,96.1 End Lat/Lon: 18.1,94.8

Thick Cirrus Example

Retrieved Quantities

A-Train Microphysics (Mace Algorithms) Date and Orbit: 2007219_06785 Location: Southeast Asia Start Lat/Lon: 5.2,96.1 End Lat/Lon: 11.0,94.8

A-Train Microphysics -Aqua Comparison Date and Orbit: 2007219_06785 Lacation: Southeast Asia Start Lat/Lan: 5.2,96.1 End Lat/Lon: 11.0,94.8

Cloud Radiative Effects

 $CRE = (F \downarrow - F \uparrow)_{AII} - (F \downarrow - F \uparrow)_{Clear}$

Cirrus effects on energy budget

FIG. 13. (a) Emitted infrared and reflected solar flux and (b) infrared, net, and solar cloud forcing in W m⁻² as a function of cirrus 0.55 μ m optical depth. The cloud is assumed to be plane-parallel and located between 15 and 17 km altitude. The solar zenith angle is 53°.

Ackerman et al., 1988

How would this vary as a function of IWP for observed clouds?

Which cirrus contribute most to heating?

Mean net CRF at TOA for Cirrus= 21Wm⁻²

Conclusions

- Cirrus and deep layers dominate
- Mean value alone is not representative for IWP
- Radar and lidar needed to describe IWP
- Net zero Cloud Radiative Effect at TOA
- Cirrus layers with IWP ~ 20g/m² contribute most to heating