Shear Stress Notes

Units and symbols:

- σ Normal stress (Pa)
- T Shear strength (Pa)
- τ Shear stress (Pa)
- ρ Density (kg/m³)
- g Acceleration of gravity (9.81 m/s²)
- m Mass (kg)
- H Depth/height (m)
- N Newton = Force

FORCE

Units of force: $N = kgm/s^2$

How would we convert forces into pressures?

PRESSURE

$$pressure = \frac{f \ orce}{area} = \frac{mass * gravity}{area}$$

Units of Pressure: $Pa = N/m^2 = kg/ms^2$ kPa = Pa/1000

Free-body Diagram on a Flat Surface

Normal stress (flat plane):

$$\sigma = \rho \cdot g \cdot H$$

Free-body Diagram with Slope

Shear stress:

$$\tau = \rho \cdot g \cdot H \cdot \sin(\psi)$$