Tensile/Trapezoid Test Notes #### Variables and units $T_f = Tensile Force [N]$ S_t = Tensile Stress [Pa] T_S = Tensile Strength [Pa] m = mass of the snow element (kg) N = normal force (N) g = acceleration due to gravity (9.8 m/s²) μ = coefficient of friction (0.1 for trapezoid tests, no units) Ψ or θ = slope angle (degrees or radians) ρ = average density of the snow element (kg/m³) V = volume of the snow element (m³) H = thickness of the trapezoid (m) W_b = width of the trapezoid base/bottom (m) W_f = width of the trapezoid fracture face/fracture plane (m) L_t = length of the trapezoid from base to fracture plane (m) b = width of slab (m) h = height of slab (m) L_S = length of slab on slope (m) A = area of fracture plane (b*h, m^2) #### Free Body Diagram #### 1. Balance forces in the free body diagram: - a) $N = mg \cos \psi$ - b) $mg \sin \psi = \mu N + T_f$ ## 2. Determine the tensile force (T_f) for the trapezoid test: $$T_f = mg \sin \psi - \mu mg \cos \psi$$ a) $$T_f = mg(\sin \psi - \mu \cos \psi)$$ Since $m = \rho V$ (mass = volume*density).... b) $$T_f = \rho V g(\sin \psi - \mu \cos \psi)$$ # 3. The tensile strength (T_S) is determined as follows, using the trapezoid test: Start with equation 2b: a) $$T_f = \rho V g(\sin \psi - \mu \cos \psi)$$ Substitute the volume of a trapezoid for V $(V = \frac{1}{2} H L_t (W_f + W_b))$ b) $T_f = \rho \frac{1}{2} H L_t (W_f + W_b) g(\sin \psi - \mu \cos \psi)$ Because $Pressure = \frac{Force}{Area}$, we divide T_f by the area of the <u>fracture plane</u> $(A = W_f H)$ to get the tensile strength: $$T_S = \frac{T_f}{A}$$ c) $$T_S = \frac{\rho_2^1 H L_t(W_f + W_b) g(\sin \psi - \mu \cos \psi)}{W_f H}$$ Simplify $$T_S = \frac{\rho g L_t (W_f + W_b) (\sin \psi - \mu \cos \psi)}{2W_f}$$ ### 4. The tensile stress (S_t) on a slope of length L_S is determined as follows: While the trapezoid test allows us to determine the tensile strength of a layer, we can also apply the concept of tensile stress to a larger slab on a slope. Like before, we start with $Pressure = \frac{Force}{Area}$, dividing T_f by the area of the $\underline{fracture}$ \underline{plane} to get the tensile strength: $$S_t = \frac{T_f}{A}$$ This time, however, the fracture plane is different than in the trapezoid test: A = bh And we no longer factor in friction to our equation for tensile force ($T_{\rm f}$): $$T_f = \rho V g(\sin \psi - \mu \cos \psi)$$ becomes $T_f = \rho V g \sin \psi$ So: a) $$S_t = \frac{T_f}{A} = \frac{\rho V g \sin \psi}{bh}$$ Volume, in this scenario, is the volume of the slab: $$V = bhL_{S}$$ b) $$S_t = \frac{\rho bh L_S g \sin \psi}{bh}$$ Simplify: $$S_t = \rho L_S g \sin \psi$$