Tensile/Trapezoid Test Notes

Variables and units

 $T_f = Tensile Force [N]$

 S_t = Tensile Stress [Pa]

T_S = Tensile Strength [Pa]

m = mass of the snow element (kg)

N = normal force (N)

g = acceleration due to gravity (9.8 m/s²)

 μ = coefficient of friction (0.1 for trapezoid tests, no units)

 Ψ or θ = slope angle (degrees or radians)

 ρ = average density of the snow element (kg/m³)

V = volume of the snow element (m³)

H = thickness of the trapezoid (m)

 W_b = width of the trapezoid base/bottom (m)

W_f = width of the trapezoid fracture face/fracture plane (m)

 L_t = length of the trapezoid from base to fracture plane (m)

b = width of slab (m)

h = height of slab (m)

 L_S = length of slab on slope (m)

A = area of fracture plane (b*h, m^2)

Free Body Diagram

1. Balance forces in the free body diagram:

- a) $N = mg \cos \psi$
- b) $mg \sin \psi = \mu N + T_f$

2. Determine the tensile force (T_f) for the trapezoid test:

$$T_f = mg \sin \psi - \mu mg \cos \psi$$
a)
$$T_f = mg(\sin \psi - \mu \cos \psi)$$

Since $m = \rho V$ (mass = volume*density)....

b)
$$T_f = \rho V g(\sin \psi - \mu \cos \psi)$$

3. The tensile strength (T_S) is determined as follows, using the trapezoid test:

Start with equation 2b:

a)
$$T_f = \rho V g(\sin \psi - \mu \cos \psi)$$

Substitute the volume of a trapezoid for V
 $(V = \frac{1}{2} H L_t (W_f + W_b))$
b) $T_f = \rho \frac{1}{2} H L_t (W_f + W_b) g(\sin \psi - \mu \cos \psi)$

Because $Pressure = \frac{Force}{Area}$, we divide T_f by the area of the <u>fracture plane</u> $(A = W_f H)$ to get the tensile strength:

$$T_S = \frac{T_f}{A}$$
c)
$$T_S = \frac{\rho_2^1 H L_t(W_f + W_b) g(\sin \psi - \mu \cos \psi)}{W_f H}$$

Simplify

$$T_S = \frac{\rho g L_t (W_f + W_b) (\sin \psi - \mu \cos \psi)}{2W_f}$$

4. The tensile stress (S_t) on a slope of length L_S is determined as follows:

While the trapezoid test allows us to determine the tensile strength of a layer, we can also apply the concept of tensile stress to a larger slab on a slope.

Like before, we start with $Pressure = \frac{Force}{Area}$, dividing T_f by the area of the $\underline{fracture}$ \underline{plane} to get the tensile strength:

$$S_t = \frac{T_f}{A}$$

This time, however, the fracture plane is different than in the trapezoid test: A = bh

And we no longer factor in friction to our equation for tensile force ($T_{\rm f}$):

$$T_f = \rho V g(\sin \psi - \mu \cos \psi)$$
 becomes $T_f = \rho V g \sin \psi$

So:

a)
$$S_t = \frac{T_f}{A} = \frac{\rho V g \sin \psi}{bh}$$

Volume, in this scenario, is the volume of the slab:

$$V = bhL_{S}$$

b)
$$S_t = \frac{\rho bh L_S g \sin \psi}{bh}$$

Simplify:

$$S_t = \rho L_S g \sin \psi$$