1. You and your friends perform the trapezoid test in your pit at the study plot on an angle of 45 degrees on a layer 50 cm below the surface. You get the following results:
$\rho_{\mathrm{avg}}=210 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{wb}=1 \mathrm{~m}$
$\mathrm{wf}=0.2 \mathrm{~m}$
$\mathrm{I}=1.5 \mathrm{~m}$
What is the tensile strength found with your trapezoid test?
$T_{S}=\frac{\rho_{a v g} \cdot g \cdot l \cdot\left(w_{b}+w_{f}\right) \cdot(\sin \psi-\mu \cdot \cos \psi)}{2 \cdot w_{f}}$
$T_{S}=\frac{210 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 1.5 \mathrm{~m} \cdot(1 \mathrm{~m}+0.2 \mathrm{~m}) \cdot(\sin 45-0.1 \cdot \cos 45)}{2 \cdot 0.2 \mathrm{~m}}=5899.7 \mathrm{~Pa}$
2. On an adjacent slope with the same average density and same tensile strength as you found above, a slab avalanche released earlier that morning. The length of the slab was 5.5 m . What is the angle of the adjacent slope?
$S_{T}=\rho_{a v g} \cdot g \cdot l \cdot \sin \psi$
For failure, $S_{T}=T_{S}$
$\psi=\sin ^{-1}\left(\frac{T_{S}}{\rho_{a v g} \cdot g \cdot l}\right)$
$\psi=\sin ^{-1}\left(\frac{5899.7 P a}{210 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 5.5 \mathrm{~m}}\right)=31.4^{\circ}$
3. A few days later you go on vacation in Jackson Hole. Before dropping in to a sick line on a 40 degree slope, you stop to calculate the length a slab would have to be for failure in tension above a layer about 30 cm below the surface.
$\mathrm{T}_{\mathrm{s}}=8000 \mathrm{~Pa}$
$\rho_{\mathrm{avg}}=200 \mathrm{~kg} / \mathrm{m}^{3}$
length $=$?
$S_{T}=\rho_{a v g} \cdot g \cdot l \cdot \sin \psi$
For failure, $S_{T}=T_{S}$

$$
\begin{aligned}
& l=\frac{T_{S}}{\rho_{a v g} \cdot g \cdot \sin \psi} \\
& l=\frac{8000 \mathrm{~Pa}}{200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \sin 40}=6.34 \mathrm{~m}
\end{aligned}
$$

