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Introduction

The radiative heat exchange in the lowest atmospheric layers

leads to “clear-air” radiative heating and cooling. During the third
field campaign of the Mountain Terrain Atmospheric Modeling and
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Observations Program (MATERHORN), the contribution of the
longwave radiative heating rate to the overall temperature

tendency was directly measured in the near-surface layer between
2 and ~8 m above ground. Measurements were conducted at two

sites: in the high alpine Heber Valley (1697 m MSL) and in the
broad Salt Lake City (SLC) Basin (1289 m MSL).

Relative Calibration

Kipp and Zonen CGR4 pyrgeometers were carefully calibrated at

the SLC field site prior to deployment on meteorological masts.
The relative calibration involves a regression allowing the
calibration coefficient of the instruments and the thermistor
coefficients to vary within their uncertainty ranges. It yielded an
agreement of individual sensor pairs to between +0.15 W m-

and +0.59 W m. The uncertainties in the radiative heating rates

determined for the bulk layer between the two measurement
levels were below 7 K day-'or 0.3 K hr.

Uncertainties SLC Heber
LW in + 0.38 W m™2 + 0.59 W m2
LW out + 0.15 W m2 + 0.18 W m2
LW net +0.42 W m2 + 0.61 W m™
Radiative Heating Rate + 5.5 K day"’ + 6.5 K day™’

Data examples

Time series of short- and longwave, in- and outgoing radiative fluxes, top-of-atmosphere radiation (ETR), albedo, temperatures, and inferred radiative heating rates are shown for a selected
3-day period of clear skies in March, and for 3-day periods in early January when fog formed at both the Salt Lake Basin and Heber Valley sites.

Observations of radiative cooling and heating
under clear sky and fog conditions
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Clear Skv Conditions (7-9 March 2015)
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Fog episodes (7-10 Jan. 2015)

SLC, snow free, some fog
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Initial Results

»

AGL can be resolved after a careful relative calibration of research-grade pyrgeometers.

» A daytime convergence of the net longwave flux typically leads to a daytime radiative heating rate of up
to ~100 K day’ (~4 K hr'). This magnitude corresponds to the temperature tendency observed in the
morning hours. This illustrates the importance of clear-air longwave radiative heat exchange in the
surface layer.

The time lag between maximum observed heating and radiative heating indicates the important role of
other processes.

» At night, under clear skies, the divergence of the outgoing flux is compensated by a convergence of the
incoming flux. Zero to weak cooling results.

Under clear-sky conditions, the divergence/convergence of the outgoing longwave flux component
dominates net radiative cooling/heating.

When fog droplets are introduced in the surface layer, radiative energy exchange changes dramatically.
Initially, shallow fog leads to enhanced radiative cooling (Heber, 7 Jan. @); persistent deep, but thin fog/
haze in cold air pools leads to a radiative warming dominated by the convergence of the incoming flux
(SLC, Jan 8 ~20:00 MST, Jan 9 ~13:00 MST4); very deep thick fog results in a zero radiative heating/
cooling (SLC, 9 Jan ~18:30 MST @ ).

»

»

»

Radiative Transfer Modeling

Spectrally-resolved radiative transfer modeling using observed temperature and humidity profiles and
measured aerosol concentrations and size distributions will be necessary to fully understand the radiative

energy exchange.

Significant differences in the incoming, outgoing, and net longwave radiative fluxes between 2 and ~8 m
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Heat budget calculations
Future work will involve estimating the other terms in the heat budget

besides the radiative flux divergence (RFD) term:
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Especially the derivation of sensible heat flux divergence (SHFD) is of
interest. Key questions relative to the SHFD calculation methodology
iInclude averaging times for flux calculations, interpolation of fluxes to

different levels, etc.
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