Atmospheric Sciences 5130

Exercise #6

This exercise is about microburst downdrafts.

- 1. Use the same procedure as we used in class to determine the downdraft speed at the surface (where p=840 mb) for a parcel that descends from the environmental LCL (at p=590 mb, $T=1^{\circ}$ C) and remains saturated due to rain evaporation until either 1, 2, or 3 g kg⁻¹ of rain have evaporated into it, then descends dry adiabatically to the surface. For each case:
 - (a) What is the SEL (sinking evaporation level)?
 - (b) What are the parcel's mixing ratio, T, T_d , and RH at the surface?
 - (c) What is the environment's mixing ratio, T, T_d , and RH at the surface?
 - (d) What is the downdraft CAPE for the parcel?
 - (e) What is the downdraft speed at the surface?
 - Answers for evaporation of 1 g kg $^{-1}$ of rain: (a) 630 mb, (b) $T=27^{\circ}{\rm C},~{\rm RH}=29\%,$ (c) $T=30^{\circ}{\rm C},~{\rm RH}=22\%,$ (d) 230 J kg $^{-1}$ (e) 21 m s $^{-1}.$
- 2. For the same environment as Problem 1, the parcel properties at the surface are T=24°C and $T_d=10.5$ °C? For this case,
 - (a) What are the parcel's mixing ratio and RH at the surface?
 - (b) What is the SEL (sinking evaporation level)?
 - (c) How much rain was evaporated into the parcel? (d) What is the downdraft CAPE for the parcel?
 - (e) What is the downdraft speed at the surface?
- 3. This is like Problem 2, but the environment properties at the surface are p = 800 mb, $T = 30^{\circ}\text{C}$, and $T_d = 3^{\circ}\text{C}$, and the parcel properties at the surface are $T = 25^{\circ}\text{C}$ and $T_d = 7^{\circ}\text{C}$? For this case,
 - (a) What are the parcel's mixing ratio and RH at the surface?
 - (b) What is the SEL (sinking evaporation level)?
 - (c) How much rain was evaporated into the parcel? (d) What is the downdraft CAPE for the parcel?
 - (e) What is the downdraft speed at the surface?