Atmospheric Sciences 5130 Exercise #1 Due Friday, January 22, 2016

This exercise deals with moisture variables and dry adiabatic processes. Use colored pencils. You may write a program to do the calculations.

1. Calculate the quantities in the table below (or on the larger version on the next page) for a parcel that ascends dry adiabatically from p = 1000 mb, where T = 20 °C and relative humidity = 50%, to p = 850 mb.

p	RH	e	e_s	w	w_s	θ	T	T_d	T_v
(mb)	(%)	(mb)	(mb)	(g/kg)	(g/kg)	(K)	(K)	(K)	(K)
850									
875									
900									
925									
950									
975									
1000	50						293.15		

- 2. On the accompanying graph paper, plot the quantities from your table.
 - (a) Relative humidity (black).
 - (b) e (red), e_s (blue).
 - (c) w (red), w_s (blue).
 - (d) θ (green), T (red), T_d (blue).
 - (e) T_v (brown).
- 3. Determine the *saturation pressure* (the pressure at the LCL=lifting condensation level) to the nearest mb.

d	RH	e	e_s	w	w_s	θ	L	T_d	T_v
(qm)	(%)	(mp)	(qm)	(g/kg)	(g/kg)	(K)	(K)	(K) (K)	(X)
820									
875									
006									
925									
950									
975									
1000	20						293.15		