Diabatic Processes

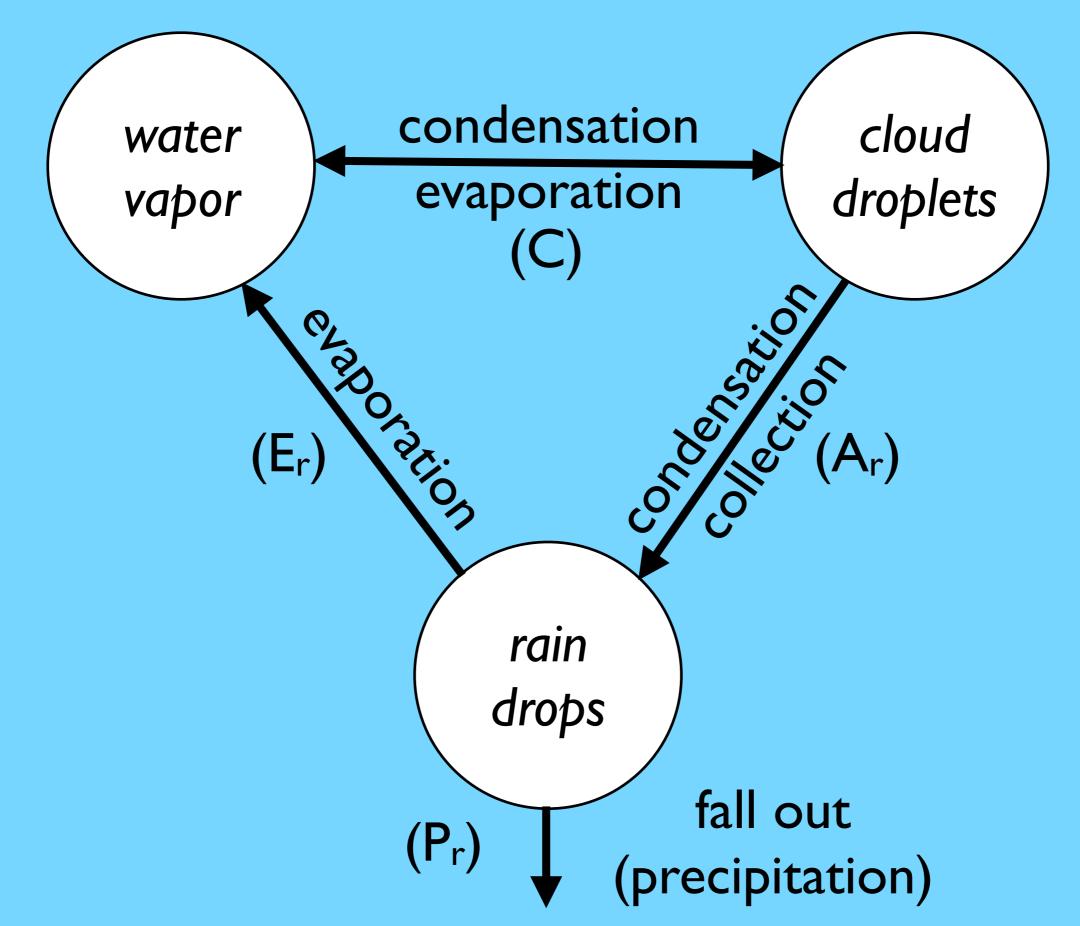
- Diabatic processes are non-adiabatic processes such as
 - precipitation fall-out
 - entrainment and mixing
 - radiative heating or cooling

Parcel Model

$$\frac{d\theta}{dt} = \frac{L}{c_p \bar{\pi}} (C - E_r) + D_\theta$$
$$\frac{dw}{dt} = -(C - E_r) + D_w$$
$$\frac{dl}{dt} = C - A_r + D_l$$
$$\frac{dr}{dt} = P_r + A_r - E_r + D_r$$

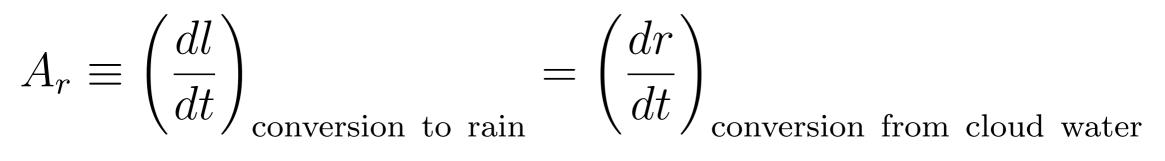
 $\bar{\pi} = (\bar{p}/p_0)^{R/c_p}$, C is the net condensation rate, E_r is the rain evaporation rate, A_r is the cloud-to-rain water conversion rate, P_r is the convergence of rain water flux, and D_i represents the effects of entrainment and mixing.

Microphysics



Diabatic Processes

Process rates per unit time interval:



Process rates per unit pressure interval:

$$-\frac{dl}{dp} = \hat{C} - \hat{A}_r + \hat{D}_l$$

$$-\hat{A}_r \equiv \left(-\frac{dl}{dp}\right)_{\text{conversion to rain}} = -Cl,$$

for dp/dt < 0 only, with $C = 2 \times 10^{-2} \text{ mb}^{-1}$.

Entrainment is the incorporation of environmental air into a parcel or cloud.

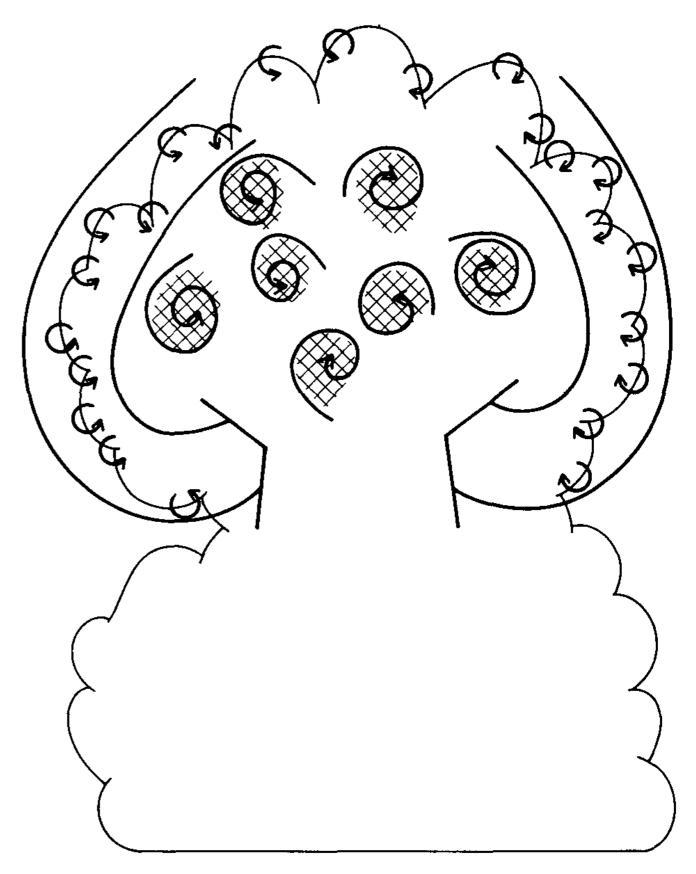
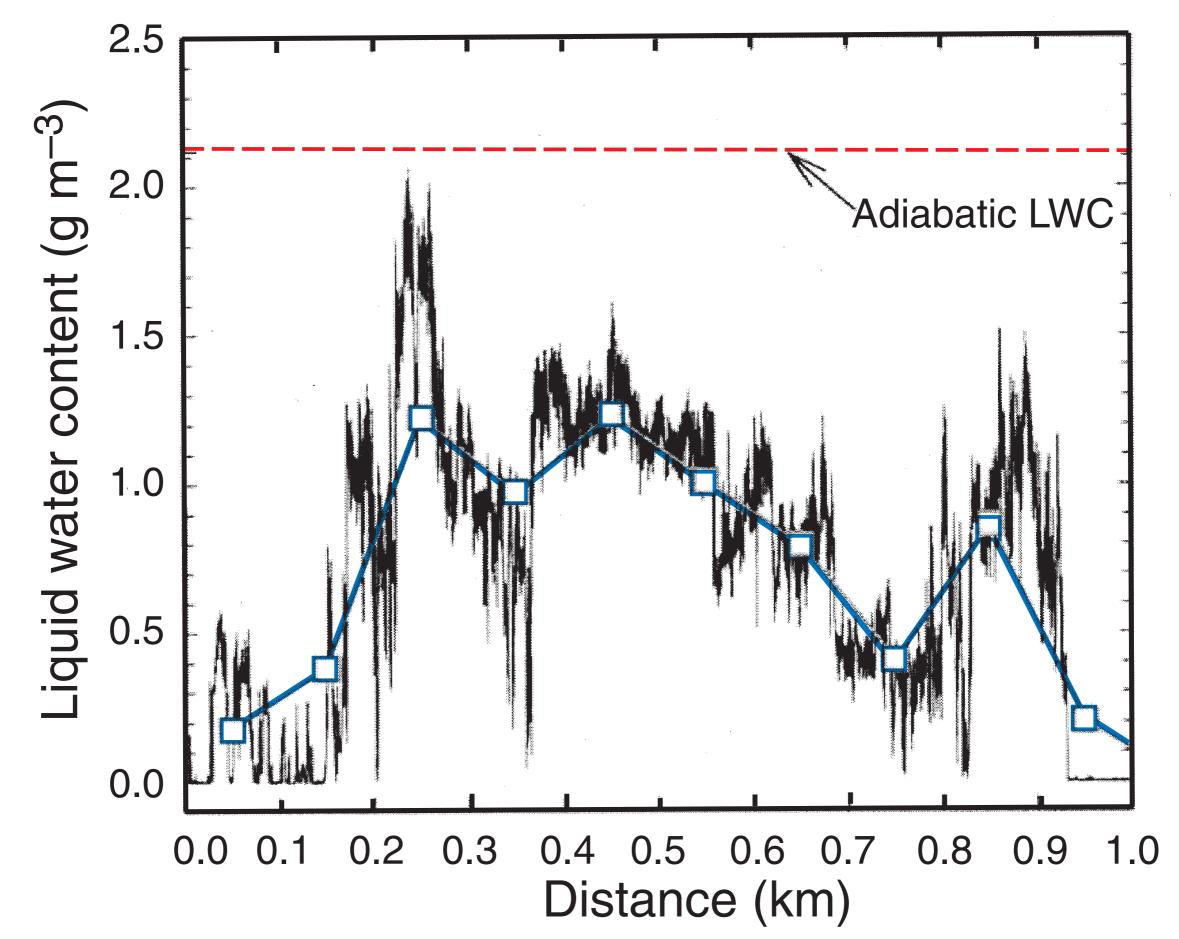
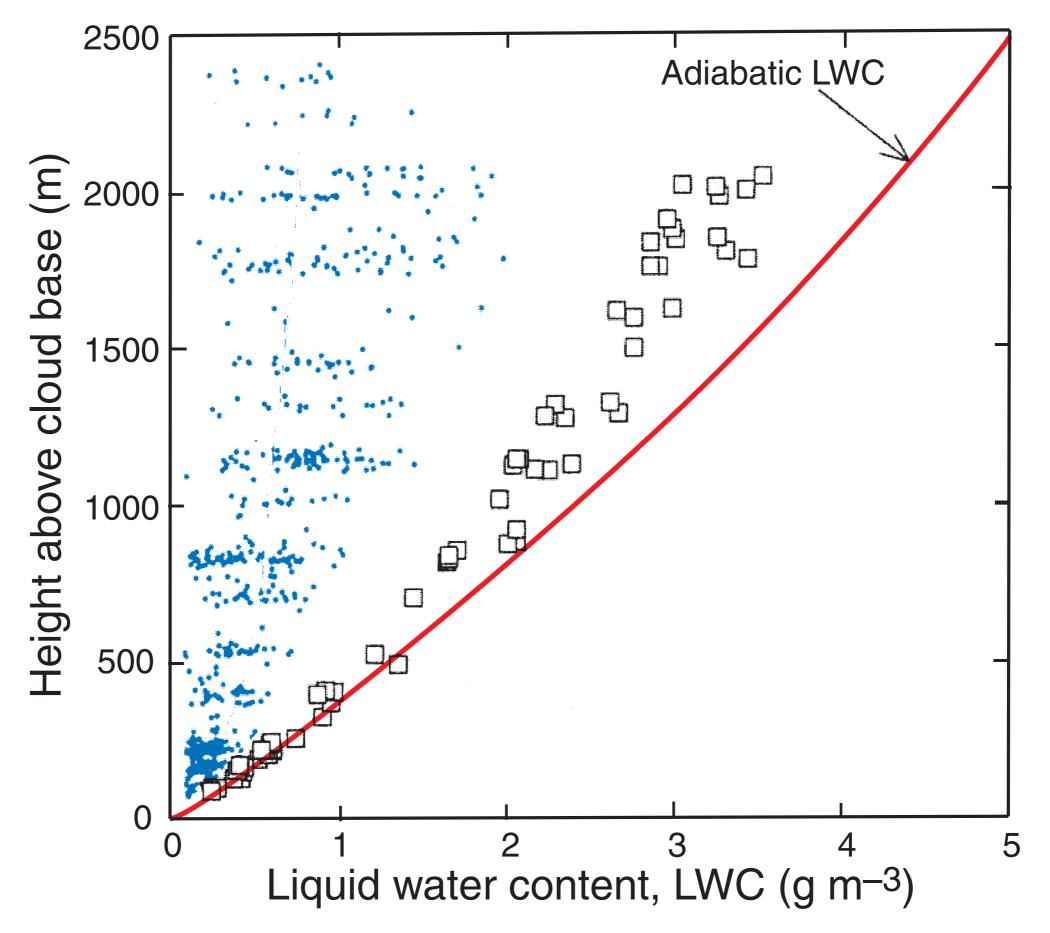


FIG. 13. Illustration of entrainment and mixing in small cumulus clouds. Key characteristics: initial entrainment and mixing near edges, simultaneous but discrete large-scale entrainment events due to cloud-scale eddies, subsequent homogenization of regions 10–100 m in length.

Evidence for Entrainment in Cu



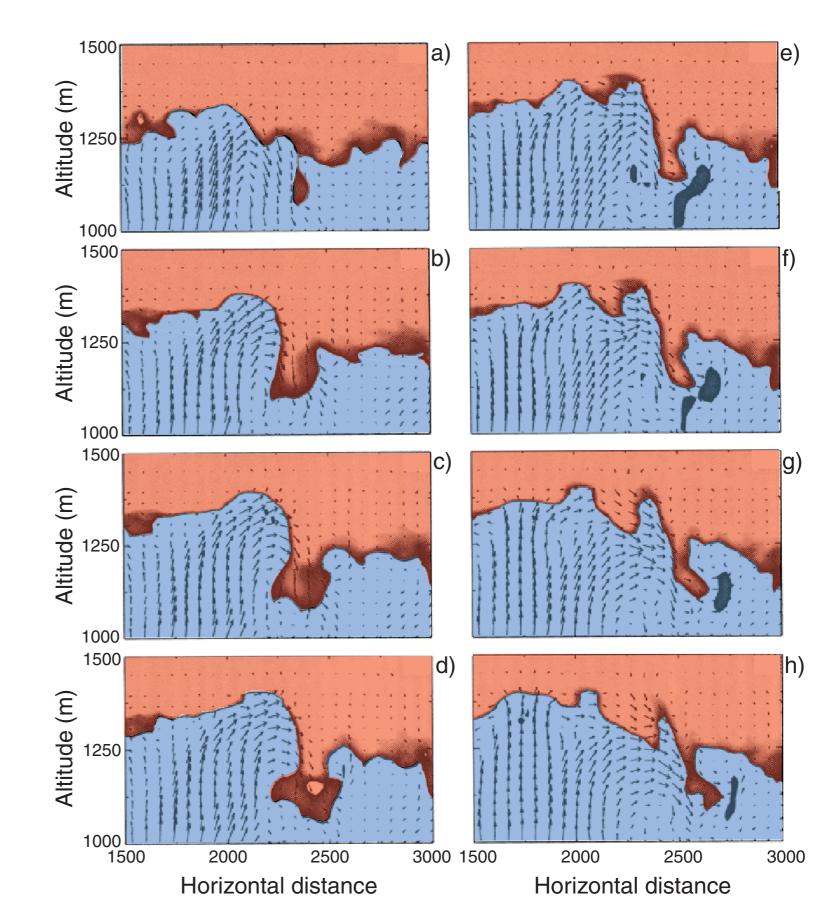
Evidence for Entrainment in Cu

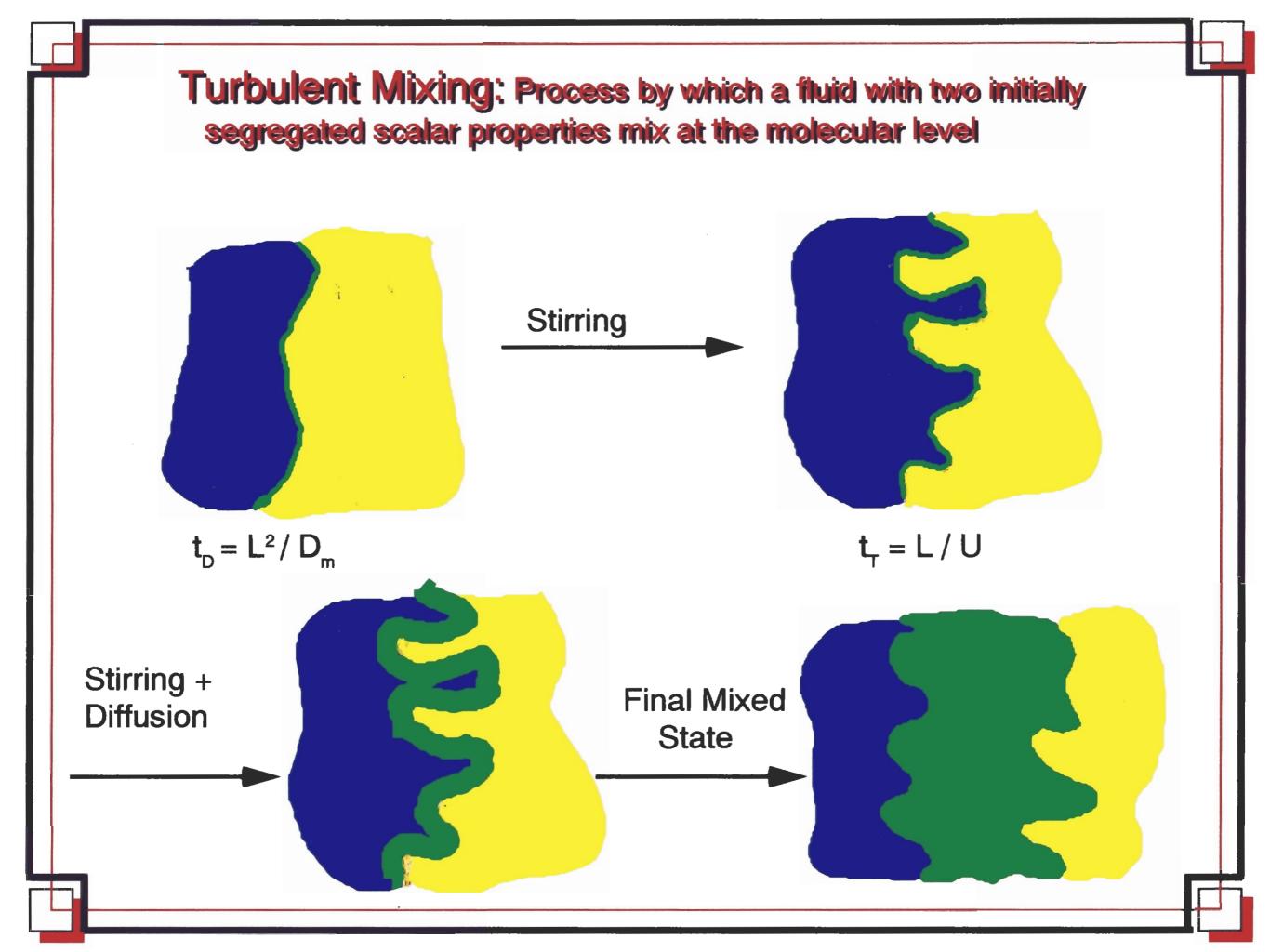


Entrainment in Stratocumulus

Entrainment in Stratocumulus

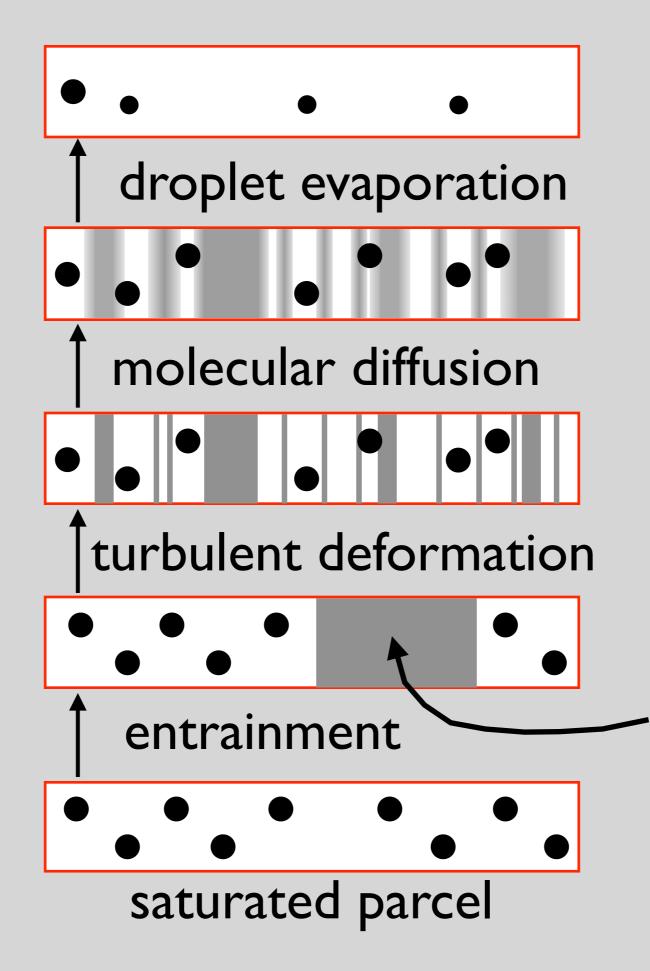
Entrainment in a 3D high-resolution simulation of Sc.



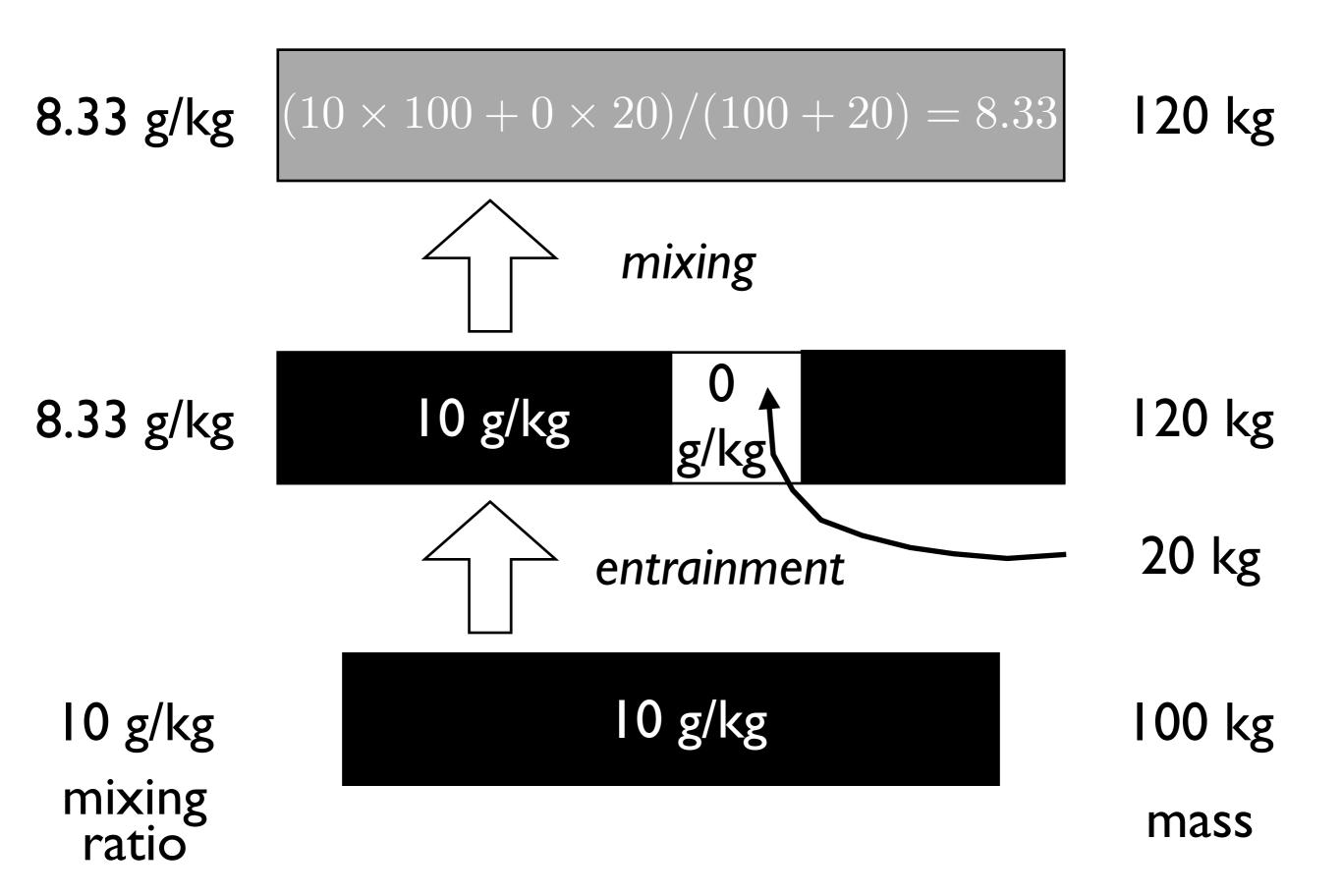


Entrainment: Kelvin-Helmholtz Instability

Entrainment into a turbulent jet



Fractional Rate of Entrainment



The fractional rate of entrainment of a parcel of mass m that entrains a blob of mass dm while the pressure changes by -dp (due to ascent) is

$$\hat{\lambda} \equiv -\frac{1}{m} \frac{dm}{dp}.$$

The rate of change of a scalar ϕ due to entrainment is

$$\hat{D}_{\phi} \equiv \left(-\frac{d\phi}{dp}\right)_{\text{entrainment}} = -\hat{\lambda}(\phi - \phi_e),$$

where ϕ_e is the value of ϕ in the entrained air.

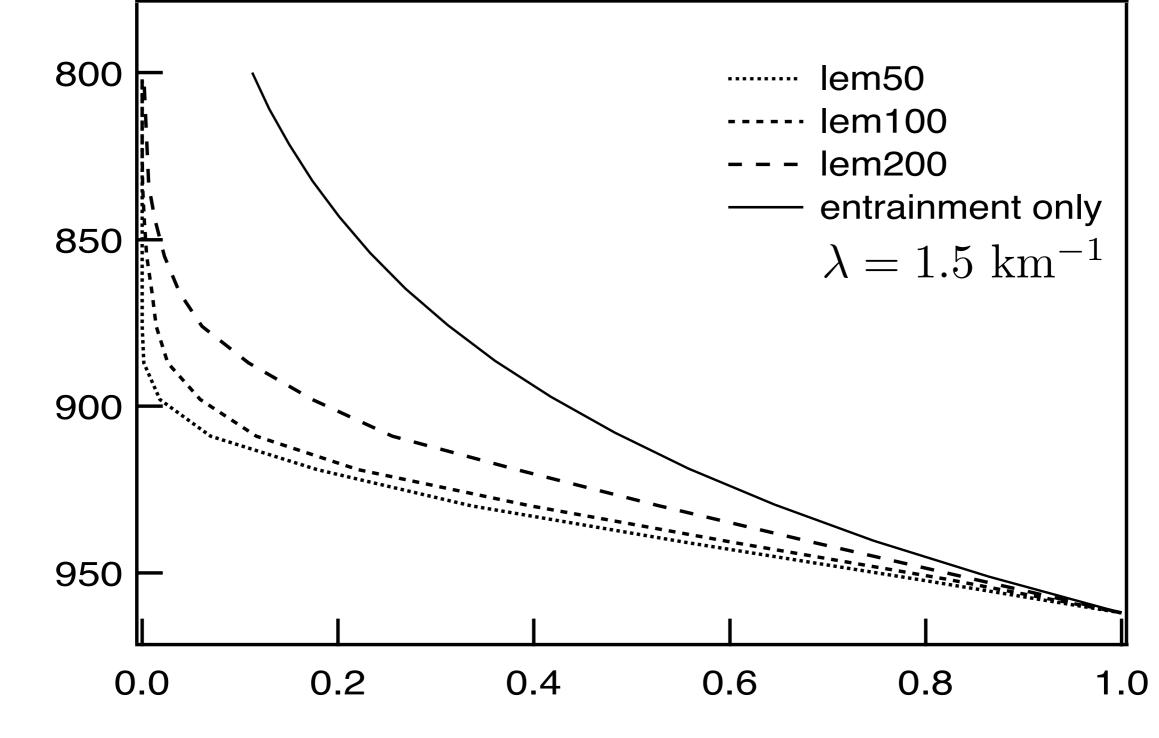
We can derive this from

$$\begin{pmatrix} -\frac{d\phi}{dp} \end{pmatrix}_{\text{entrainment}} = \lim_{\Delta p \to 0} \frac{\phi_{\text{after ent}} - \phi_{\text{before ent}}}{-\Delta p}$$
using
$$\phi_{\text{before ent}} = \phi$$
and
$$\phi_{\text{after ent}} = \frac{m\phi + \Delta m \ \phi_e}{m + \Delta m}.$$
Substitution gives
$$\begin{pmatrix} -\frac{d\phi}{dp} \end{pmatrix}_{\text{entrainment}} = \lim_{\Delta p \to 0} \frac{1}{m + \Delta m} \frac{\Delta m}{\Delta p} (\phi - \phi_e)$$

$$1 \ dm \leftarrow \infty = \hat{z} \leftarrow \infty$$

 $= \frac{1}{m}\frac{dm}{dp}(\phi - \phi_e) = -\hat{\lambda}(\phi - \phi_e).$

- In cumulus clouds, the fractional rate of entrainment, $\lambda \equiv (1/m) dm/dz$, ranges from about 0.1 km⁻¹ to 2 km⁻¹.
- Cloud-top height is largely determined by λ: deep clouds are associated with small values, and shallow clouds with large values.
- Field studies suggest that $\lambda \sim 0.2/R$, where R is the cloud radius.



Fraction of unmixed cloud base air

pressure (mb)