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Saturation Adjustment Algorithm

1. Adiabatic. No phase 
changes involving cloud 
droplets (C=0): 

2. Isobaric. Only phase 
changes involving cloud 
droplets operate (|C| > 
0):

θ∗, w∗ → θn+1, wn+1

θn, wn → θ∗, w∗
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Saturation Adjustment Algorithm

1. Adiabatic. No phase 
changes involving cloud 
droplets (C=0): 

2. Isobaric. Only phase 
changes involving cloud 
droplets operate (|C| > 
0):

θ∗, w∗ → θn+1, wn+1

θn, wn → θ∗, w∗

(θ∗, w∗) = (θn, wn)

θn+1, wn+1 = (θ∗ + ∆θ, w∗ + ∆w)
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Saturation Adjustment Algorithm

2. Isobaric. Only phase 
changes involving cloud 
droplets operate (|C| > 
0):

θn+1, wn+1 =
(θ∗ + ∆θ, w∗ + ∆w)

Conservation of energy
(First Law of Thermodynamics):
0 = cpπ∆θ + L∆w or
0 = cp∆T + L∆w

Adjusted state is exactly saturated:
wn+1 = ws(πθn+1, pn+1) or
wn+1 = ws(Tn+1, pn+1)



Saturation Adjustment Algorithm

0 = cpπ∆θ + L∆w

wn+1 = ws(πθn+1, pn+1)

0 = cpπ(θn+1 − θ∗) + L(wn+1 − w∗)

wn+1 = ws(πθn+1, pn+1)

which can be written as
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These two equations express conservation of energy (first law of thermodynamics)
and conservation of suspended water mixing ratio (vapor and cloud droplets), re-
spectively. They also form a set of two equations in three unknowns: θn+1, wn+1,
and ln+1. This means that before we can solve for the unknowns, we need to provide
another equation.

We stated above that we will assume that when the air is saturated, w = ws, and
when unsaturated, l = 0. At any given time, only one of these conditions can hold.
We first assume that the air will be exactly saturated after adjustment, so that

wn+1 = ws(T
n+1, pn+1), (7)

where ws(T, p) is the saturation mixing ratio,

ws(T, p) = 0.622
es(T )

p− es(T )
, (8)

and es(T ) is the saturation vapor pressure. One may use Bolton’s (1980) formula for
es(T ):

es(T ) = 6.112 exp
�

17.67Tc

Tc + 243.5

�
, (9)

where es is in mb, Tc = T − T0, and T0 = 273.15 K.
Equation (7) closes the set (5), (6), and (7). However, this set must be solved

iteratively because ws is a non-linear function of T . To obtain a direct (non-iterative)
solution, expand ws in a Taylor series in T about ws(T ∗, pn+1) and neglect all terms
of second and higher order:

wn+1 ≈ ws(T
∗, pn+1) +

�
∂ws

∂T

�

T=T ∗,p=pn+1

(T n+1 − T ∗). (10)

The set (5), (6), and (10) can now be solved algebraically for θn+1, wn+1, and ln+1.
To solve the set, we first write (10) in terms of θ instead of T :

wn+1 = w∗
s + α∗(θn+1 − θ∗), (11)

where w∗
s ≡ ws(T ∗, pn+1), α∗ ≡ α(T ∗, pn+1), and

α(T, p) ≡ 0.622
πp

(p− es(T ))2

�
des

dT

�

T

. (12)

For des/dT , one may use the Clausius-Clapeyron equation:

des

dT
=

Les

RvT 2
, (13)

4

3 Saturation Adjustment

In general, this set of equations must be solved (or integrated) numerically. Given the

initial parcel properties, we use the differential equations to calculate the change of

the parcel properties over a small time interval. We then use the calculated changes

to update the parcel properties. This process is repeated as many times as desired.

Each small time interval, or time step, corresponds to a change in the parcel’s

pressure from pn to pn+1 = pn + ∆p where n is the old time level and n + 1 denotes

the new time level. For computational purposes, we consider the changes that occur

in the parcel’s properties during each time step to take place in two stages:

1. All processes operate except phase changes involving cloud droplets (C = 0).

2. Only phase changes involving cloud droplets operate (C �= 0).

This two-stage process is very nearly thermodynamically equivalent to the actual,

continuous process.

Let the values of θ, w, and l after the first stage be θ∗, w∗, and l∗. The air may be

subsaturated, supersaturated, or exactly saturated at this point. It is observed that

supersaturation is very small in real clouds. We will simply assume that supersatura-
tion does not occur. We will also assume that cloud droplets evaporate immediately

when the relative humidity falls below 100%. In other words, when the air is satu-

rated, w = ws(T, p), where ws is the saturation mixing ratio, and when unsaturated,

l = 0. Saturation adjustment, the second stage, enforces these conditions.

During the saturation adjustment,

∆θ = γC∆t,

∆w = −C∆t,

∆l = C∆t,

where ∆φ ≡ φn+1 − φ∗, for any variable φ, and ∆t is the time step. See Fig. 1. The

unknown C can be eliminated from this set of equations by forming the following

set:

∆θ + γ∆w = 0,

∆w + ∆l = 0.

These imply that:

θn+1
+ γwn+1

= θ∗ + γw∗
(5)

wn+1
+ ln+1

= w∗
+ l∗. (6)

3

where θv is the virtual potential temperature, C is the net condensation rate, Er

is the rain evaporation rate, Ar is the cloud-to-rain water conversion rate, and Di

represents the effects of turbulent mixing. Overbars indicate hydrostatic, reference

state values. The hydrostatic reference state obeys

dπ̄

dz
= − g

cpθ̄v
,

where π, the nondimensional pressure (Exner function), is defined as

π ≡
�

p

p0

�R/cp

where p0 is a constant reference pressure. T is given by

T = π̄θ.

2 Parcel Model

The parcel model assumes that convection consists of discrete buoyant parcels, often

called thermals. The goal of the parcel model is to predict the average properties of

such thermals. In the simplest versions of the parcel model, we assume that π� = 0,

and that any rain falls out of the parcel immediately. In the parcel model, the

turbulent mixing terms Di represent entrainment of environmental air.

The resulting equations for the average properties of a parcel are:

dθ

dt
= γC + Dθ (1)

dw

dt
= −C + Dw (2)

dl

dt
= C − Ar + Dl (3)

dW

dt
= g

�
θ − θ̄

θ̄
+ 0.61(w − w̄)− l

�

+ DW (4)

where γ ≡ L/(cpπ̄).

This set governs the properties of an air parcel as it undergoes ascent or descent.

The vertical velocity equation determines the rate of ascent or descent of the parcel,

and therefore its height as a function of time. We can determine the parcel’s pressure

from its height using the hydrostatic equation since π� = 0.

2

3 Saturation Adjustment

In general, this set of equations must be solved (or integrated) numerically. Given the

initial parcel properties, we use the differential equations to calculate the change of

the parcel properties over a small time interval. We then use the calculated changes

to update the parcel properties. This process is repeated as many times as desired.

Each small time interval, or time step, corresponds to a change in the parcel’s

pressure from pn to pn+1 = pn + ∆p where n is the old time level and n + 1 denotes

the new time level. For computational purposes, we consider the changes that occur

in the parcel’s properties during each time step to take place in two stages:

1. All processes operate except phase changes involving cloud droplets (C = 0).

2. Only phase changes involving cloud droplets operate (C �= 0).

This two-stage process is very nearly thermodynamically equivalent to the actual,

continuous process.

Let the values of θ, w, and l after the first stage be θ∗, w∗, and l∗. The air may be

subsaturated, supersaturated, or exactly saturated at this point. It is observed that

supersaturation is very small in real clouds. We will simply assume that supersatura-
tion does not occur. We will also assume that cloud droplets evaporate immediately

when the relative humidity falls below 100%. In other words, when the air is satu-

rated, w = ws(T, p), where ws is the saturation mixing ratio, and when unsaturated,

l = 0. Saturation adjustment, the second stage, enforces these conditions.

During the saturation adjustment,

∆θ = γC∆t,

∆w = −C∆t,

∆l = C∆t,

where ∆φ ≡ φn+1 − φ∗, for any variable φ, and ∆t is the time step. See Fig. 1. The

unknown C can be eliminated from this set of equations by forming the following

set:

∆θ + γ∆w = 0,

∆w + ∆l = 0.

These imply that:

θn+1
+ γwn+1

= θ∗ + γw∗
(5)

wn+1
+ ln+1

= w∗
+ l∗. (6)

3

These two equations express conservation of energy (first law of thermodynamics)
and conservation of suspended water mixing ratio (vapor and cloud droplets), re-
spectively. They also form a set of two equations in three unknowns: θn+1, wn+1,
and ln+1. This means that before we can solve for the unknowns, we need to provide
another equation.
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, (9)

where es is in mb, Tc = T − T0, and T0 = 273.15 K.
Equation (7) closes the set (5), (6), and (7). However, this set must be solved

iteratively because ws is a non-linear function of T . To obtain a direct (non-iterative)
solution, expand ws in a Taylor series in T about ws(T ∗, pn+1) and neglect all terms
of second and higher order:

wn+1 ≈ ws(T
∗, pn+1) +

�
∂ws

∂T

�

T=T ∗,p=pn+1
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4where L = 2.5× 106 J/kg and Rv = 461.5 J/(kg K).

Now use (11) in (5) to eliminate wn+1. Then solve for θn+1:

θn+1
= θ∗ +

γ

1 + γα∗ (w
∗ − w∗

s). (14)

Once θn+1 is known from (14), we can immediately obtain wn+1 from (11), and ln+1

from (6).

If wn+1 ≤ w∗+l∗, then (6) implies that ln+1 ≥ 0. This means that our assumption

that the air is saturated is correct. If wn+1 > w∗+ l∗, (6) implies that ln+1 < 0, which

is impossible and means that our assumption of saturation is incorrect. Therefore,

the air is not saturated, so

ln+1
= 0 (15)

replaces (10). Then (5) and (6) become

wn+1
= w∗

+ l∗, (16)

θn+1
= θ∗ − γ(wn+1 − w∗

). (17)
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Figure 1: Saturation adjustment.
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γ

1 + γα∗ (w
∗ − w∗

s). (14)

Once θn+1 is known from (14), we can immediately obtain wn+1 from (11), and ln+1

from (6).

If wn+1 ≤ w∗+l∗, then (6) implies that ln+1 ≥ 0. This means that our assumption

that the air is saturated is correct. If wn+1 > w∗+ l∗, (6) implies that ln+1 < 0, which

is impossible and means that our assumption of saturation is incorrect. Therefore,

the air is not saturated, so

ln+1
= 0 (15)

replaces (10). Then (5) and (6) become

wn+1
= w∗

+ l∗, (16)

θn+1
= θ∗ − γ(wn+1 − w∗

). (17)
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