Nonlocal influence of Stratification on Turbulence and Stability

Recall HW2 problem 5.2

z (m)	$\overline{\theta_v}$ (K) \overline{U} (m	
80	305	18
70	305	17
60	301	15
50	300	14
40	298	10
30	294	8
20	292	7
10	292	7
0	293	2

• Let's work it out for this profile!

z (km)	T(°C)	<i>U</i> (m s ^{−1})
13	-58	30
11	-58	60
8	-30	25
5	-19	20
3	-3	18
2.5	1	9
2	2	8
1.6	0	5
0.2	13	5
0	18	0

z (km)	T(°C)	U (m s ^{−1})	θ(°C)	Tavg (k)	Δz (m)	ΔU (m s ⁻¹)	Δ θ (K)
13	-58	30	69.4				
11	-58	60	49.8	215.15	2000	-30	19.6
8	30	25	48.8	229.15	3000	35	1.4
5	-19	20	30	248.65	3000	5	18.4
3	-3	18	26.4	262.15	2000	2	3.6
2.5	1	9	25.5	272.15	500	9	0.9
2	2	8	21.6	274.65	500	1	3.9
1.6	0	5	15.68	274.15	400	3	5.92
0.2	13	5	14.96	279.65	1400	0	0.72
0	18	0	18	288.65	200	5	-3.04

5.7.2. Dynamic Stability

Dynamic stability considers both buoyancy and wind shear to determine whether the flow will become turbulent. **Wind shear** is the change of wind speed or direction with height, and can be squared to indicate the kinetic energy available to cause turbulence.

The ratio of buoyant energy to shear-kinetic energy is called the **bulk Richardson number**, *Ri*, which is dimensionless:

$$Ri = \frac{|g| \cdot (\Delta T_v + \Gamma_d \cdot \Delta z) \cdot \Delta z}{T_v \cdot \left[(\Delta U)^2 + (\Delta V)^2 \right]}$$
(5.9a)

and

$$Ri = \frac{|g| \cdot \Delta \theta_v \cdot \Delta z}{T_v \cdot \left[(\Delta U)^2 + (\Delta V)^2 \right]}$$
(5.9b)

 $^{-2}$ (K) m 2 ()²

where [$\Delta \theta_v$, ΔU , ΔV , ΔT_v] are the change of [virtual potential temperature, east-west wind component, north-south wind component, virtual temperature] across a layer of thickness Δz . As before, $\Gamma_d = 9.8 \cdot \text{K}$ km⁻¹ is the dry adiabatic lapse rate, and T_v must be in absolute units (K) in the denominator of eq. (5.9).

Layer (km)	R _B	Dynamically	Statically	Turbulen
11 to 13	1.98	Stable	Stable	no
8 to 11	0.15	Unstable	Stable	yes
5 to 8	87.02	Stable	Stable	no
3 to 5	67.29	Stable	Stable	no
2.5 to 3	0.20	Unstable	Stable	yes
2 to 2.5	69.58	Stable	Stable	no
1.6 to 2	9.41	Stable	Unstable to 1.8 km	yes to 1.8 km
0.2 to 1.6	$+\infty$	(undefined)	Unstable	yes
0 to 0.2	-0.83	Unstable	Unstable	yes

Sample Application

For the following sounding, determine the regions of turbulence.

<i>z</i> (km)	<i>T</i> (°C)	<i>U</i> (m s ⁻¹)	V (m s ⁻¹)
2	0	15	0
1.5	0	12	0
1.2	2	6	4
0.8	2	5	4
0.1	8	5	2
0	12	0	0

Find the Answer:

Given: The sounding above.

Find: a) Static stability (nonlocal parcel apex method),

b) dynamic stability, & (c) identify turbulence. Assume dry air, so $T = T_v$.

Method: Use spreadsheet to compute θ and *Ri*. Note that *Ri* applies to the layers <u>between</u> sounding levels.

<i>z</i> (km)	θ (°C)	z _{layer} (km)	Ri
2	19.6	0	
1.5	14.7	1.5 to 2.0	9.77
1.2	13.8	1.2 to 1.5	0.19
0.8	9.8	0.8 to 1.2	55.9
0.1	9.0	0.1 to 0.8	5.25
0	12	0 to 0.1	-0.358

- a) Static Stability: Unstable & turbulent for z = 0 to 1 km, as shown by nonlocal air-parcel rise in the θ sounding.
- b) Dynamic Stability: NUnstable $z \ll 1$ turbulent for z = 0to 0.1 km, & for $z = 1/2^2$ to 1.5 km, where Ri < 0.25.
- c) Turbulence exists where the air is statically OR dynamically unstable, or both. Therefore: <u>Turbulence at 0 - 1 km, and 1.2 to 1.5 km.</u>

- Is the middle layer neutral?
- Is the bottom layer stable?

- **Unstable** air becomes, or is, **turbulent** (irregular, gusty, stormy).
- **Stable** air becomes, or is, **laminar** (non-turbulent, smooth, non-stormy).
- **Neutral** air has no tendency to change (disturbances neither amplify or dampen).

Static stability determination. Step 1: Plot the sounding. (This sounding is contrived to illustrate all stabilities.)

r or r(g/kg) = 0.10.20.512

Static stability determination. (c) Step 3: Downward displacement. (d) Step 4: Identify unstable regions (shaded yellow).

20

30

40

Figure 5.14e

Static stability determination. Step 5: Identify statically stable regions (shaded light blue) and neutral regions (no shading).

r or r(g/kg) = 0.10.20.512510