Meteorology 5300

Surface Layer Wind Profiles

Find u_{*} and z_{0} from the following wind profile measurements made during statically neutral conditions at sunset:

$z(\mathrm{~m})$	$\bar{u}(\mathrm{~m} / \mathrm{s})$
0.5	2.8.
2	4.2.
8	5.6.
32	7.0

Meteorology 5300
 Surface Layer Wind Profiles

Find u_{*} and z_{0} from the following wind profile measurements made during statically neutral conditions at sunset:

$z(\mathrm{~m})$	$\bar{u}(\mathrm{~m} / \mathrm{s})$
0.5	2.8.
2	4.2.
8	5.6.
32	7.0

To calculate u_{*}, apply the log wind profile

$$
u=u_{*} / k \log \left(z / z_{0}\right)
$$

at any two heights z_{1} and z_{2} to obtain

$$
u\left(z_{2}\right)-u\left(z_{1}\right)=u_{*} / k \log \left(z_{2} / z_{1}\right)
$$

$\log (z 2 / z 0)-\log (z 1 / z 0)=\log ((z 2 / z 0) /(z 1 / z 0))=\log (z 2 / z 1)$

Meteorology 5300
 Surface Layer Wind Profiles

Find u_{*} and z_{0} from the following wind profile measurements made during statically neutral conditions at sunset:

$z(\mathrm{~m})$	$\bar{u}(\mathrm{~m} / \mathrm{s})$
0.5	2.8.
2	4.2.
8	5.6.
32	7.0

To calculate u_{*}, apply the log wind profile

$$
u=u_{*} / k \log \left(z / z_{0}\right)
$$

at any two heights z_{1} and z_{2} to obtain

$$
u\left(z_{2}\right)-u\left(z_{1}\right)=u_{*} / k \log \left(z_{2} / z_{1}\right)
$$

then solve for u_{*} :

$$
u_{*}=k \frac{u\left(z_{2}\right)-u\left(z_{1}\right)}{\log \left(z_{2} / z_{1}\right)} .
$$

0.4 (6.9-4.2) $/ \log (32 / 2)=$

$0.4 *(2.7) / \log (16)=0.3895$

Meteorology 5300
 Surface Layer Wind Profiles

Find u_{*} and z_{0} from the following wind profile measurements made during statically neutral conditions at sunset:

$z(\mathrm{~m})$	$\bar{u}(\mathrm{~m} / \mathrm{s})$
0.5	2.8.
2	4.2.
8	5.6.
32	7.0

To calculate u_{*}, apply the log wind profile

$$
u=u_{*} / k \log \left(z / z_{0}\right)
$$

at any two heights z_{1} and z_{2} to obtain

$$
u\left(z_{2}\right)-u\left(z_{1}\right)=u_{*} / k \log \left(z_{2} / z_{1}\right)
$$

then solve for u_{*} :

$$
u_{*}=k \frac{u\left(z_{2}\right)-u\left(z_{1}\right)}{\log \left(z_{2} / z_{1}\right)} .
$$

To calculate z_{0}, solve the \log wind profile at any height z for z_{0} :

$$
\begin{aligned}
& z_{0}=z \exp \left(-k u(z) / u_{*}\right) \\
& \log (z / z 0)=k u / u^{*} \\
& z / z 0=\exp \left(k u / u^{*}\right) \\
& z 0=z \exp \left(-k u / u^{*}\right) \\
& z 0=8^{*} \exp \left(-0.4^{*} 5.6 / 0.4\right)=0.0296
\end{aligned}
$$

Meteorology 5300
 Surface Layer Wind Profiles

Find u_{*} and z_{0} from the following wind profile measurements made during statically neutral conditions at sunset:

$z(\mathrm{~m})$	$\bar{u}(\mathrm{~m} / \mathrm{s})$
0.5	2.8.
2	4.2.
8	5.6.
32	7.0

To calculate u_{*}, apply the log wind profile

$$
u=u_{*} / k \log \left(z / z_{0}\right)
$$

at any two heights z_{1} and z_{2} to obtain

$$
u\left(z_{2}\right)-u\left(z_{1}\right)=u_{*} / k \log \left(z_{2} / z_{1}\right)
$$

then solve for u_{*} :

$$
u_{*}=k \frac{u\left(z_{2}\right)-u\left(z_{1}\right)}{\log \left(z_{2} / z_{1}\right)} .
$$

To calculate z_{0}, solve the \log wind profile at any height z for z_{0} :

$$
z_{0}=z \exp \left(-k u(z) / u_{*}\right)
$$

The graphical solution method is to plot the wind profile u versus $\log z$, then extrapolate the profile to $u=0$. The height at which $u=$ is z_{0}.

Meteorology 5300
 Surface Layer Wind Profiles

Find u_{*} and z_{0} from the following wind profile measurements made during statically neutral conditions at sunset:

$z(\mathrm{~m})$	$\bar{u}(\mathrm{~m} / \mathrm{s})$
0.5	2.8.
2	4.2.
8	5.6.
32	7.0

To calculate u_{*}, apply the log wind profile

$$
u=u_{*} / k \log \left(z / z_{0}\right)
$$

at any two heights z_{1} and z_{2} to obtain

$$
u\left(z_{2}\right)-u\left(z_{1}\right)=u_{*} / k \log \left(z_{2} / z_{1}\right)
$$

then solve for u_{*} :

$$
u_{*}=k \frac{u\left(z_{2}\right)-u\left(z_{1}\right)}{\log \left(z_{2} / z_{1}\right)} .
$$

To calculate z_{0}, solve the \log wind profile at any height z for z_{0} :

$$
z_{0}=z \exp \left(-k u(z) / u_{*}\right)
$$

The graphical solution method is to plot the wind profile u versus $\log z$, then extrapolate the profile to $u=0$. The height at which $u=$ is z_{0}.

$$
\begin{aligned}
& \text { Answer: } \\
& u_{*}=0.4 \mathrm{~m} / \mathrm{s}, z_{0}=0.03 \mathrm{~m} .
\end{aligned}
$$

