Find u_* and z_0 from the following wind profile measurements made during statically neutral conditions at sunset:

z (m)	$\bar{u} \ (m/s)$
0.5	2.8.
2	4.2.
8	5.6.
32	7.0

Find u_* and z_0 from the following wind profile measurements made during statically neutral conditions at sunset:

To calculate u_* , apply the log wind profile

$$u = u_*/k \log(z/z_0),$$

at any two heights z_1 and z_2 to obtain

$$u(z_2) - u(z_1) = u_*/k \log(z_2/z_1),$$

 $\log(z^2/z^0) - \log(z^1/z^0) = \log((z^2/z^0)/(z^1/z^0)) = \log(z^2/z^1)$

Find u_* and z_0 from the following wind profile measurements made during statically neutral conditions at sunset:

To calculate u_* , apply the log wind profile

$$u = u_*/k \log(z/z_0),$$

at any two heights z_1 and z_2 to obtain

$$u(z_2) - u(z_1) = u_*/k \log(z_2/z_1)$$

then solve for u_* :

$$u_* = k \frac{u(z_2) - u(z_1)}{\log(z_2/z_1)}.$$

0.4 (6.9-4.2)/log(32/2)= 0.4 *(2.7) / log(16) = 0.3895

Find u_* and z_0 from the following wind profile measurements made during statically neutral conditions at sunset:

To calculate u_* , apply the log wind profile

$$u = u_*/k \log(z/z_0),$$

at any two heights z_1 and z_2 to obtain

$$u(z_2) - u(z_1) = u_*/k \log(z_2/z_1),$$

then solve for u_* :

$$u_* = k \frac{u(z_2) - u(z_1)}{\log(z_2/z_1)}.$$

0

2

4

u (m/s)

6

8

Find u_* and z_0 from the following wind profile measurements made during statically neutral conditions at sunset:

To calculate u_* , apply the log wind profile

$$u = u_*/k \log(z/z_0),$$

at any two heights z_1 and z_2 to obtain

$$u(z_2) - u(z_1) = u_*/k \log(z_2/z_1),$$

then solve for u_* :

$$u_* = k \frac{u(z_2) - u(z_1)}{\log(z_2/z_1)}.$$

Find u_* and z neutral conditions

2.8.
4.2.
5.6.
7.0

To calculate ι

at any two heights

then solve for u_* :

Answer: $u_* = 0.4 \text{ m/s}, z_0 = 0.03 \text{ m}.$