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ABSTRACT

The ‘‘Santa Ana’’ winds of Southern California represent a high-impact weather event because their dry,
fast winds can significantly elevate the wildfire threat. This high-resolution numerical study of six events of
moderate or greater strength employs physics parameterization and stochastic perturbation ensembles to
determine the optimal model configuration for predicting winds in San Diego County, with verification
performed against observations from the San Diego Gas and Electric (SDG&E) mesonet. Results demon-
stratemodel physics can have amaterial effect on the strength, location, and timing of the winds, with the land
surfacemodel playing an outsized role via its specification of surface roughness lengths. Even when bias in the
network-averaged sustained wind forecasts is minimized, systematic biases remain in that many stations are
consistently over- or underforecasted. The argument is made that this is an ‘‘unavoidable’’ error that rep-
resents localized anemometer exposure issues revealed through the station gust factor. A very simple gust
parameterization is proposed for the mesonet based on the discovery that the network-averaged gust factor is
independent of weather conditions and results in unbiased forecasts of gusts at individual stations and the
mesonet as a whole. Combined with atmospheric humidity and fuel moisture information, gust forecasts can
help in the assessment of wildfire risks.

1. Introduction

We continue an investigation of gusty downslopewinds in
San Diego County, California, that occur during ‘‘Santa
Ana’’ conditions, a cool-seasonweather pattern consisting of
offshore flow emanating from the Great Basin and Mojave
Desert that canbe amplifiedby the terrain (cf.Raphael 2003;
Conil and Hall 2006; Jones et al. 2010; Hughes and Hall
2010). The winds can be very dry, and sometimes hot,
contributing to the fire danger in Southern California
(e.g., Rolinski et al. 2016). The danger can be particularly
acute in autumn, prior to the onset of winter rains (e.g.,
Westerling et al. 2004;Moritz et al. 2010).A striking example
was the Santa Ana event of late October 2007 that was as-
sociated with multiple fires across Southern California, in-
cluding the Witch Creek fire, which was sparked by power
lines (cf. Cao and Fovell 2016; Fovell and Cao 2017).

This paper is the second in a series investigating the
predictability of the gusty downslope windstorms of San
Diego County. Part I of this study, Cao and Fovell (2016,
hereafter CF16), focused on the moderately strong
14–16 February 2013 downslope windstorm event, in which
near-surface wind gusts exceeding 40ms21 were recorded
in a wildfire-prone mountainous backcountry area covered
by a high-density San Diego Gas and Electric (SDG&E)
mesonet. High-resolution simulations with the Advanced
Research version of theWeatherResearch and Forecasting
(WRF) Model (Skamarock et al. 2008) revealed that the
first phase of that event exhibited characteristics of a
prominent hydraulic jump flow in part of the county, while
the second phase showed a clear downslope progression of
winds as the event wound down. Supporting evidence for
our simulations and interpretations were found in the
mesonet observations.
The success of CF16’s simulations depended upon ap-

propriate selections of the model physics and spatial
resolution. Physical processes requiring parameterizationCorresponding author: Prof. Robert Fovell, rfovell@albany.edu
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in models like WRF include land surface and subsurface
(soil) processes, mixing in the planetary boundary layer
(PBL), radiative transfer, cloud microphysical processes,
and the influence of subgrid turbulence and subgrid cloud
activity. There are several viable options for each of these
processes, resulting in a potentially enormous number
of possible combinations, although some are undoubt-
edly better than others for this application. Using
a ;50-member physics ensemble, CF16 demonstrated
that most model configurations overpredicted the winds
observed in themesonet, with the forecast bias beingmost
sensitive to the land surfacemodel (LSM).However, even
the most skillful configuration exhibited a wind-speed-
dependent bias, which simultaneously overpredicted less
windy sites and underpredicted windier locations. CF16
also showed that horizontal resolution profoundly influ-
enced the spatial extent of the downslope flow, including
controlling where the winds were strongest.
The first objective of this paper is to further in-

vestigate the sensitivity of the intensity, spatial extent,
and structure of these windstorms to model physics, and
to explain why some LSMs outperformed others. This
will be done by examining additional Santa Ana events
that have occurred since the deployment of the SDG&E
mesonet. The second is to develop a strategy for pa-
rameterizing small-scale wind gusts, which cannot be
resolved in mesoscale models. This is motivated by the
fact that gusts can cause an enormous amount of damage
to electrical infrastructure.
Gustiness is a remarkable feature of many downslope

windstorms (e.g., Durran 2003; Jackson et al. 2013). As
an example, the well-studied 11 January 1972 Boulder,
Colorado, downslope windstorm had wind bursts as high
as 60ms21 (e.g., Klemp and Lilly 1975). Empirical and
heuristic attempts have been made to estimate
wind gusts by multiplying the resolved-scale sustained
wind speed by a gust factor [GF, the ratio of the
peak wind speed of a given duration (gust) to the mean
wind speed for a given averaging period] empirically
determined from available observations (e.g., Mitsuta
and Tsukamoto 1989) or adding a scalar value to the
sustained wind, assuming a normal distribution of wind
fluctuations (e.g., Wieringa 1973; Panofsky et al. 1977;
Beljaars 1987). Brasseur (2001) pursued a gust parame-
terization based on physical considerations, reflecting
boundary layer turbulence. In this work, we motivate a
remarkably simple gust algorithm, which is shown to be
skillful when applied to sustained wind forecasts for both
individual SDG&E stations and the mesonet as a whole.
The organization of this manuscript is as follows. The

available observations, model experimental design, and
verification strategy are described in section 2. Model
sensitivity to model physics, stochastic perturbations, and

surface roughness is investigated in section 3. Section 4
presents an analysis of wind forecast bias for individual
stations. A simple yet skillful gust parameterization for
the SDG&E network is introduced in section 5, and the
final section presents the summary.

2. Data and methods

a. Available observations

Wind observations are crucial for verifying and cali-
brating model forecasts of downslope windstorms. As in
CF16 and Fovell and Cao (2017, hereafter FC17), we
employed the dense, homogeneous, and high quality
SDG&E surface observation network of (presently 158)
stations sited in wind-prone areas, which commenced
deployment in 2009 (see Fig. 1, and CF16’s Fig. 1).
SDG&E stations were purposefully sited in wind-prone
areas, especially in the mountainous backcountry of San
Diego County, and generally conform to the Remote
Automated Weather Stations (RAWS) network stan-
dard with respect to anemometer mounting height
(6.1m) and sampling (3 s) and averaging (10min)
intervals. In the SDG&E network, the sustained wind is
the temporal mean of the 3-s samples over each aver-
aging interval, with the gust representing the highest
wind speed sample in the interval. In contrast, RAWS
gusts are not guaranteed to come from the same se-
quence of observations that was used to compute the
sustained wind. Another difference is that SDG&E
stations report every 10min, while RAWS stations
report once within each hour.
In CF16, we studied a moderately strong Santa Ana

wind event of 14–16 February 2013 that was captured by
the SDG&E network, employing a model with fine
temporal and spatial resolution. Like many Santa Ana
events, it spanned two days and evinced a pronounced
diurnal cycle with a lull in the offshore winds in the late
afternoon of the first day, possibly a response to
boundary layer evolution (cf. Smith and Skyllingstad
2011). During the first phase, a hydraulic jump became
visible in a vertical cross section oriented west–east
across SDG&E station West Santa Ysabel (WSY), sited
very near where the October 2007 Witch fire started.
The jumplike feature persisted for several hours and was
consistent with observations taken at stations arrayed
along the west-facing slope, including sites WSY, Witch
Creek (WCK), and Sunset Oaks (SSO). The second
phase consisted of a marked westward downslope pro-
gression of winds with time as the overall winds ampli-
fied and waned.
In this study, six Santa Ana episodes (Table 1)

were selected, adding to the February 2013 case two

540 WEATHER AND FORECAST ING VOLUME 33



in models like WRF include land surface and subsurface
(soil) processes, mixing in the planetary boundary layer
(PBL), radiative transfer, cloud microphysical processes,
and the influence of subgrid turbulence and subgrid cloud
activity. There are several viable options for each of these
processes, resulting in a potentially enormous number
of possible combinations, although some are undoubt-
edly better than others for this application. Using
a ;50-member physics ensemble, CF16 demonstrated
that most model configurations overpredicted the winds
observed in themesonet, with the forecast bias beingmost
sensitive to the land surfacemodel (LSM).However, even
the most skillful configuration exhibited a wind-speed-
dependent bias, which simultaneously overpredicted less
windy sites and underpredicted windier locations. CF16
also showed that horizontal resolution profoundly influ-
enced the spatial extent of the downslope flow, including
controlling where the winds were strongest.
The first objective of this paper is to further in-

vestigate the sensitivity of the intensity, spatial extent,
and structure of these windstorms to model physics, and
to explain why some LSMs outperformed others. This
will be done by examining additional Santa Ana events
that have occurred since the deployment of the SDG&E
mesonet. The second is to develop a strategy for pa-
rameterizing small-scale wind gusts, which cannot be
resolved in mesoscale models. This is motivated by the
fact that gusts can cause an enormous amount of damage
to electrical infrastructure.
Gustiness is a remarkable feature of many downslope

windstorms (e.g., Durran 2003; Jackson et al. 2013). As
an example, the well-studied 11 January 1972 Boulder,
Colorado, downslope windstorm had wind bursts as high
as 60ms21 (e.g., Klemp and Lilly 1975). Empirical and
heuristic attempts have been made to estimate
wind gusts by multiplying the resolved-scale sustained
wind speed by a gust factor [GF, the ratio of the
peak wind speed of a given duration (gust) to the mean
wind speed for a given averaging period] empirically
determined from available observations (e.g., Mitsuta
and Tsukamoto 1989) or adding a scalar value to the
sustained wind, assuming a normal distribution of wind
fluctuations (e.g., Wieringa 1973; Panofsky et al. 1977;
Beljaars 1987). Brasseur (2001) pursued a gust parame-
terization based on physical considerations, reflecting
boundary layer turbulence. In this work, we motivate a
remarkably simple gust algorithm, which is shown to be
skillful when applied to sustained wind forecasts for both
individual SDG&E stations and the mesonet as a whole.
The organization of this manuscript is as follows. The

available observations, model experimental design, and
verification strategy are described in section 2. Model
sensitivity to model physics, stochastic perturbations, and

surface roughness is investigated in section 3. Section 4
presents an analysis of wind forecast bias for individual
stations. A simple yet skillful gust parameterization for
the SDG&E network is introduced in section 5, and the
final section presents the summary.

2. Data and methods

a. Available observations

Wind observations are crucial for verifying and cali-
brating model forecasts of downslope windstorms. As in
CF16 and Fovell and Cao (2017, hereafter FC17), we
employed the dense, homogeneous, and high quality
SDG&E surface observation network of (presently 158)
stations sited in wind-prone areas, which commenced
deployment in 2009 (see Fig. 1, and CF16’s Fig. 1).
SDG&E stations were purposefully sited in wind-prone
areas, especially in the mountainous backcountry of San
Diego County, and generally conform to the Remote
Automated Weather Stations (RAWS) network stan-
dard with respect to anemometer mounting height
(6.1m) and sampling (3 s) and averaging (10min)
intervals. In the SDG&E network, the sustained wind is
the temporal mean of the 3-s samples over each aver-
aging interval, with the gust representing the highest
wind speed sample in the interval. In contrast, RAWS
gusts are not guaranteed to come from the same se-
quence of observations that was used to compute the
sustained wind. Another difference is that SDG&E
stations report every 10min, while RAWS stations
report once within each hour.
In CF16, we studied a moderately strong Santa Ana

wind event of 14–16 February 2013 that was captured by
the SDG&E network, employing a model with fine
temporal and spatial resolution. Like many Santa Ana
events, it spanned two days and evinced a pronounced
diurnal cycle with a lull in the offshore winds in the late
afternoon of the first day, possibly a response to
boundary layer evolution (cf. Smith and Skyllingstad
2011). During the first phase, a hydraulic jump became
visible in a vertical cross section oriented west–east
across SDG&E station West Santa Ysabel (WSY), sited
very near where the October 2007 Witch fire started.
The jumplike feature persisted for several hours and was
consistent with observations taken at stations arrayed
along the west-facing slope, including sites WSY, Witch
Creek (WCK), and Sunset Oaks (SSO). The second
phase consisted of a marked westward downslope pro-
gression of winds with time as the overall winds ampli-
fied and waned.
In this study, six Santa Ana episodes (Table 1)

were selected, adding to the February 2013 case two

540 WEATHER AND FORECAST ING VOLUME 33



in models like WRF include land surface and subsurface
(soil) processes, mixing in the planetary boundary layer
(PBL), radiative transfer, cloud microphysical processes,
and the influence of subgrid turbulence and subgrid cloud
activity. There are several viable options for each of these
processes, resulting in a potentially enormous number
of possible combinations, although some are undoubt-
edly better than others for this application. Using
a ;50-member physics ensemble, CF16 demonstrated
that most model configurations overpredicted the winds
observed in themesonet, with the forecast bias beingmost
sensitive to the land surfacemodel (LSM).However, even
the most skillful configuration exhibited a wind-speed-
dependent bias, which simultaneously overpredicted less
windy sites and underpredicted windier locations. CF16
also showed that horizontal resolution profoundly influ-
enced the spatial extent of the downslope flow, including
controlling where the winds were strongest.
The first objective of this paper is to further in-

vestigate the sensitivity of the intensity, spatial extent,
and structure of these windstorms to model physics, and
to explain why some LSMs outperformed others. This
will be done by examining additional Santa Ana events
that have occurred since the deployment of the SDG&E
mesonet. The second is to develop a strategy for pa-
rameterizing small-scale wind gusts, which cannot be
resolved in mesoscale models. This is motivated by the
fact that gusts can cause an enormous amount of damage
to electrical infrastructure.
Gustiness is a remarkable feature of many downslope

windstorms (e.g., Durran 2003; Jackson et al. 2013). As
an example, the well-studied 11 January 1972 Boulder,
Colorado, downslope windstorm had wind bursts as high
as 60ms21 (e.g., Klemp and Lilly 1975). Empirical and
heuristic attempts have been made to estimate
wind gusts by multiplying the resolved-scale sustained
wind speed by a gust factor [GF, the ratio of the
peak wind speed of a given duration (gust) to the mean
wind speed for a given averaging period] empirically
determined from available observations (e.g., Mitsuta
and Tsukamoto 1989) or adding a scalar value to the
sustained wind, assuming a normal distribution of wind
fluctuations (e.g., Wieringa 1973; Panofsky et al. 1977;
Beljaars 1987). Brasseur (2001) pursued a gust parame-
terization based on physical considerations, reflecting
boundary layer turbulence. In this work, we motivate a
remarkably simple gust algorithm, which is shown to be
skillful when applied to sustained wind forecasts for both
individual SDG&E stations and the mesonet as a whole.
The organization of this manuscript is as follows. The

available observations, model experimental design, and
verification strategy are described in section 2. Model
sensitivity to model physics, stochastic perturbations, and

surface roughness is investigated in section 3. Section 4
presents an analysis of wind forecast bias for individual
stations. A simple yet skillful gust parameterization for
the SDG&E network is introduced in section 5, and the
final section presents the summary.

2. Data and methods

a. Available observations

Wind observations are crucial for verifying and cali-
brating model forecasts of downslope windstorms. As in
CF16 and Fovell and Cao (2017, hereafter FC17), we
employed the dense, homogeneous, and high quality
SDG&E surface observation network of (presently 158)
stations sited in wind-prone areas, which commenced
deployment in 2009 (see Fig. 1, and CF16’s Fig. 1).
SDG&E stations were purposefully sited in wind-prone
areas, especially in the mountainous backcountry of San
Diego County, and generally conform to the Remote
Automated Weather Stations (RAWS) network stan-
dard with respect to anemometer mounting height
(6.1m) and sampling (3 s) and averaging (10min)
intervals. In the SDG&E network, the sustained wind is
the temporal mean of the 3-s samples over each aver-
aging interval, with the gust representing the highest
wind speed sample in the interval. In contrast, RAWS
gusts are not guaranteed to come from the same se-
quence of observations that was used to compute the
sustained wind. Another difference is that SDG&E
stations report every 10min, while RAWS stations
report once within each hour.
In CF16, we studied a moderately strong Santa Ana

wind event of 14–16 February 2013 that was captured by
the SDG&E network, employing a model with fine
temporal and spatial resolution. Like many Santa Ana
events, it spanned two days and evinced a pronounced
diurnal cycle with a lull in the offshore winds in the late
afternoon of the first day, possibly a response to
boundary layer evolution (cf. Smith and Skyllingstad
2011). During the first phase, a hydraulic jump became
visible in a vertical cross section oriented west–east
across SDG&E station West Santa Ysabel (WSY), sited
very near where the October 2007 Witch fire started.
The jumplike feature persisted for several hours and was
consistent with observations taken at stations arrayed
along the west-facing slope, including sites WSY, Witch
Creek (WCK), and Sunset Oaks (SSO). The second
phase consisted of a marked westward downslope pro-
gression of winds with time as the overall winds ampli-
fied and waned.
In this study, six Santa Ana episodes (Table 1)

were selected, adding to the February 2013 case two

540 WEATHER AND FORECAST ING VOLUME 33

in models like WRF include land surface and subsurface
(soil) processes, mixing in the planetary boundary layer
(PBL), radiative transfer, cloud microphysical processes,
and the influence of subgrid turbulence and subgrid cloud
activity. There are several viable options for each of these
processes, resulting in a potentially enormous number
of possible combinations, although some are undoubt-
edly better than others for this application. Using
a ;50-member physics ensemble, CF16 demonstrated
that most model configurations overpredicted the winds
observed in themesonet, with the forecast bias beingmost
sensitive to the land surfacemodel (LSM).However, even
the most skillful configuration exhibited a wind-speed-
dependent bias, which simultaneously overpredicted less
windy sites and underpredicted windier locations. CF16
also showed that horizontal resolution profoundly influ-
enced the spatial extent of the downslope flow, including
controlling where the winds were strongest.
The first objective of this paper is to further in-

vestigate the sensitivity of the intensity, spatial extent,
and structure of these windstorms to model physics, and
to explain why some LSMs outperformed others. This
will be done by examining additional Santa Ana events
that have occurred since the deployment of the SDG&E
mesonet. The second is to develop a strategy for pa-
rameterizing small-scale wind gusts, which cannot be
resolved in mesoscale models. This is motivated by the
fact that gusts can cause an enormous amount of damage
to electrical infrastructure.
Gustiness is a remarkable feature of many downslope

windstorms (e.g., Durran 2003; Jackson et al. 2013). As
an example, the well-studied 11 January 1972 Boulder,
Colorado, downslope windstorm had wind bursts as high
as 60ms21 (e.g., Klemp and Lilly 1975). Empirical and
heuristic attempts have been made to estimate
wind gusts by multiplying the resolved-scale sustained
wind speed by a gust factor [GF, the ratio of the
peak wind speed of a given duration (gust) to the mean
wind speed for a given averaging period] empirically
determined from available observations (e.g., Mitsuta
and Tsukamoto 1989) or adding a scalar value to the
sustained wind, assuming a normal distribution of wind
fluctuations (e.g., Wieringa 1973; Panofsky et al. 1977;
Beljaars 1987). Brasseur (2001) pursued a gust parame-
terization based on physical considerations, reflecting
boundary layer turbulence. In this work, we motivate a
remarkably simple gust algorithm, which is shown to be
skillful when applied to sustained wind forecasts for both
individual SDG&E stations and the mesonet as a whole.
The organization of this manuscript is as follows. The

available observations, model experimental design, and
verification strategy are described in section 2. Model
sensitivity to model physics, stochastic perturbations, and

surface roughness is investigated in section 3. Section 4
presents an analysis of wind forecast bias for individual
stations. A simple yet skillful gust parameterization for
the SDG&E network is introduced in section 5, and the
final section presents the summary.

2. Data and methods

a. Available observations

Wind observations are crucial for verifying and cali-
brating model forecasts of downslope windstorms. As in
CF16 and Fovell and Cao (2017, hereafter FC17), we
employed the dense, homogeneous, and high quality
SDG&E surface observation network of (presently 158)
stations sited in wind-prone areas, which commenced
deployment in 2009 (see Fig. 1, and CF16’s Fig. 1).
SDG&E stations were purposefully sited in wind-prone
areas, especially in the mountainous backcountry of San
Diego County, and generally conform to the Remote
Automated Weather Stations (RAWS) network stan-
dard with respect to anemometer mounting height
(6.1m) and sampling (3 s) and averaging (10min)
intervals. In the SDG&E network, the sustained wind is
the temporal mean of the 3-s samples over each aver-
aging interval, with the gust representing the highest
wind speed sample in the interval. In contrast, RAWS
gusts are not guaranteed to come from the same se-
quence of observations that was used to compute the
sustained wind. Another difference is that SDG&E
stations report every 10min, while RAWS stations
report once within each hour.
In CF16, we studied a moderately strong Santa Ana

wind event of 14–16 February 2013 that was captured by
the SDG&E network, employing a model with fine
temporal and spatial resolution. Like many Santa Ana
events, it spanned two days and evinced a pronounced
diurnal cycle with a lull in the offshore winds in the late
afternoon of the first day, possibly a response to
boundary layer evolution (cf. Smith and Skyllingstad
2011). During the first phase, a hydraulic jump became
visible in a vertical cross section oriented west–east
across SDG&E station West Santa Ysabel (WSY), sited
very near where the October 2007 Witch fire started.
The jumplike feature persisted for several hours and was
consistent with observations taken at stations arrayed
along the west-facing slope, including sites WSY, Witch
Creek (WCK), and Sunset Oaks (SSO). The second
phase consisted of a marked westward downslope pro-
gression of winds with time as the overall winds ampli-
fied and waned.
In this study, six Santa Ana episodes (Table 1)

were selected, adding to the February 2013 case two

540 WEATHER AND FORECAST ING VOLUME 33



moderately strong events (in October 2013 and January
2015) and three strong events (in April 2014, May 2014,
and February 2015). Multiphysics ensembles consisting
of around 50 members each were constructed for the
February 2013, October 2013, and May 2014 episodes,
which may provide some insights into the optimal model
configuration with respect to model physics that are ap-
plicable to other events of various strengths. Verifications
employed the 135 SDG&E stations that were common to
all six events andare shown inFig. 1.All six eventswereused
for the composite analyses presented in sections 4 and 5.

b. Model setup and verification strategy

As in CF16 and FC17, we employedWRF version 3.5
utilizing five domains telescoping to 667-m grid spacing
that covered the highest terrain portion of the SDG&E
network (Fig. 1). Domain 4 (2-km resolution) encom-
passed the entire SDG&E network (see CF16’s Fig. 3),
and all analyses were performed in this nest. This work
was motivated by the need to anticipate winds that could
impact electrical transmission lines, and so forecast data
available in real time were used for the initialization
and lateral boundary forcing. Specifically, all simula-
tions were initialized with North American Mesoscale
Forecast System (NAM) grids at either 1200 or 0600
UTC, with earlier initializations preferred for episodes
with multiple peaks. All model integrations were 54h

long, starting prior to the onset of offshore winds, and
including the bulk (if not the entirety) of the Santa Ana
event. The model top was 10hPa, with 50 layers (51 full-
sigma vertical levels) employed, focusing the highest
resolution in the lower troposphere in the usual fashion.
Physics ensembles consisting of variations of the LSM

and PBL schemes were conducted to create many par-
allel realizations of these periods: 14–16 February 2013,
4–6 October 2013, and 13–15 May 2014 (Table 1). (The
14–16 February 2013 ensemble was introduced in CF16
and is examined in greater detail herein.) The five LSMs
included the Noah land surfacemodel (Chen andDudhia
2001; Ek et al. 2003), the Noah model with multi-
parameterization options (NoahMP; Niu et al. 2011), the
Rapid Update Cycle (RUC; Smirnova et al. 2000), the
Pleim–Xiu (PX; Pleim and Xiu 1995; Xiu and Pleim
2001), and the thermal diffusion (TD; Skamarock et al.
2008) schemes. Ten PBL parameterizations were se-
lected, those being the Yonsei University (YSU; Hong
et al. 2006), Mellor–Yamada–Janjić (MYJ; Janjić 1994),
quasi-normal scale elimination (QNSE; Sukoriansky
et al. 2006), Mellor–Yamada–Nakanishi–Niino level 2.5
(MYNN2; Nakanishi and Niino 2004), Asymmetric
Convection Model version 2 (ACM2; Pleim 2007a,b),
Bougeault–Lacarrere (BouLac; Bougeault and Lacarrere
1989), Bretherton–Park (UW; Bretherton and Park
2009), total energy–mass flux (TEMF; Angevine et al.

FIG. 1. Topography of Southern California (longitude on abscissa, latitude on ordinate), with
selected place names. County outlines are in gray; identifiers are Santa Barbara (SBC), Ventura
(VC), Los Angeles (LAC), Orange (OC), San Bernardino (SBC), and Riverside (RC) Counties.
White dots denote SDG&Eobservational stations. The blue box highlights theWitchCreek region,
and the red dashed line depicts the location of the vertical cross section across station WSY.
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analysis and forecasts from its 1200 UTC 14 February
2013 cycle, and integrated for 54 h. A five-domain tele-
scoping grid arrangement (denoted D1–D5) is used with
horizontal grid spacings of 54, 18, 6, 2, and 0.667 km,
respectively (Fig. 3). The innermost 667-m nest extends
about 80 km west–east by 70km north–south and covers
roughly 70% of the SDG&E mesonet, while its parent
2-km grid encompasses the entire network. The highest
resolution (;10m) U.S. Geological Survey (USGS)
terrain database available was used in the construction
of the topography of the innermost two domains,6 per-
mitting the model to capture finer-scale features (see
Fig. 3 inset) than the USGS database distributed with
WRF makes possible.
The model top is 10 hPa, with 50 layers (51 full-sigma

vertical levels) employed, focusing the highest resolu-
tion in the lower troposphere in the usual fashion. By
default, the WRF real-data initialization program (real.

exe) places about 7 half-sigma (wind and scalar) levels in
the lowest kilometer AGL, with the first level (Za) at
about 27m above the surface. The placement of the
lowest model wind level can influence surface fluxes
(Wei et al. 2001), modulate the operation of the plane-
tary boundary layer (PBL) scheme (Shin et al. 2012),
and have a particularly strong impact on downslope
windstorms (Zängl et al. 2008). We utilize the default
setup of Za 5 27m for the simulations referenced
herein, for the reasons discussed in section 2c.
Although it provides no information above 6.1m

AGL, the exceptionally dense SDG&E surface obser-
vation network enables us to evaluate the realism of the
model simulations of the terrain-amplified winds. This is
important, as we have determined from many hundreds
of WRF simulations of this and other events that im-
portant local and county-wide characteristics of the
downslope flow are quite sensitive to resolution, land-
use assumptions, model physics, and even random noise
(cf. Cao 2015). Our experiments for each event have
included combinations of 5 land surface models (LSMs)

FIG. 1. SDG&E surface station locations (black dots), with underlying topography shaded. Station labels omit ‘‘SD’’
suffix. Stations were in place as of February 2013.

6 http://nationalmap.gov/viewer.html.
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and 10 PBL schemes as well as 2 land-use databases
(USGS and MODIS); for each PBL scheme, the rec-
ommended and/or most frequently adopted surface
layer parameterization was employed. Simulations were
nearly insensitive to some other physics options, such as
the microphysics and cumulus schemes (Cao 2015).
The physics combination that consistently best repre-

sented the sustained wind observations over a set of
events with respect to magnitude and temporal and spa-
tial variation employed the Pleim–Xiu (PX; Pleim and
Xiu 1995; Xiu and Pleim 2001) LSM and surface layer
scheme, along with the Asymmetric Convection Model,
version 2 (ACM2; Pleim 2007a,b) PBL parameterization.
This ‘‘standard’’ configuration, labeled PX–ACM2, also
utilized the MODIS land-use database, the Rapid Radi-
ative Transfer Model for General Circulation Models
(RRTMG; Iacono et al. 2008) radiation parameteriza-
tion, and explicit horizontal diffusion was not applied.
Neither the land-use nor diffusion choice had much im-
pact on the results (Cao 2015) for this combination.
While the physics sensitivity experiment will be ex-

plored more fully in Part II, we will also reference herein
results using the Noah (Chen and Dudhia 2001; Ek et al.
2003) and thermal diffusion (TD; Skamarock et al. 2008)
LSMs, and theYonseiUniversity (YSU;Hong et al. 2006),
Mellor–Yamada–Janji!c (MYJ) PBL scheme (Janji!c 1994),
and total energy–mass flux (TEMF; Angevine et al. 2010)
PBL parameterizations. In particular, the Noah–YSU
combination, along with the surface layer scheme derived

fromMM5 (Noah–YSU),7 is of interest because it is likely
the most commonly used configuration in WRF.

c. Verification strategy

As noted above, SDG&E stations were intentionally
placed at wind-prone sites. An unavoidable assumption
being made in this study is that the SDG&E stations are
representative of the landscape as a whole—or at least
as it is rendered in the model. At a given grid spacing,
the model is trying to capture the gross features of the
terrain, which enter into parameterizations such as the
LSM via such factors as the surface roughness length. It
cannot directly incorporate subgrid-scale features such
as trees, buildings, small hills, and terrain creases that
can act to locally modulate the wind in the immediate
vicinity of an anemometer. We believe that one advan-
tage of SDG&E observations over their RAWS coun-
terparts is that they are less likely to be influenced by
small-scale features that we know we cannot represent
on the grid, and thus may be more representative of the
landscape we are capable of resolving.
SDG&E mesonet observations were obtained from

the Meteorological Assimilation Data Ingest System
(MADIS) archive and interpolated to station loca-
tions using the Developmental Testbed Center’s MET

FIG. 2. Scatterplot of hourly sustained winds measured at the
Goose Valley RAWS (GOSC1) and SDG&E (GOSSD) sites for
December 2011, with a 1:1 correspondence line (red). Owing to
rounding, there are numerous overlapping observations.

FIG. 3. Domain configuration for the WRF simulations, with
topography shaded. Domains 1–5 employ horizontal grid spacings
of 54, 18, 6, 2, and 0.667 km over Southern California, respectively.
The inset shows an enlarged version of domain 5.

7 This surface scheme was modified for WRF, version 3.6.
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2010), Grenier–Bretherton–McCaa (GBM; Grenier and
Bretherton 2001), and Medium-Range Forecast Model
(MRF; Hong and Pan 1996) options. For each PBL
scheme, the recommended and/or most frequently
adopted surface-layer parameterization was employed.
Some of the combinations were not workable, which left
us with a total of 48 viable ensemble members. As in
CF16, horizontal diffusion along the model surfaces was
deactivated, and the MODIS land-use database was
adopted. In contrast with Wilson and Fovell (2016),
horizontal diffusion was not found to substantially influ-
ence our results or conclusions (cf. Cao 2015, CF16).
As part of this work, the available topo_wind options
were evaluated and determined to be unhelpful.
Unsurprisingly, given the weather associated with

Santa Ana events, we found that the downslope wind-
storms were not very sensitive to the treatment of the
microphysics or cumulus convection, and the influence
of the radiation parameterization was also small.
Therefore, all simulations examined herein employed
the WRF single-moment 3-class microphysics scheme
(Hong et al. 2004), a simple ice-bearing scheme suitable
for mesoscale grid sizes, the Kain–Fritsch (Kain 2004)
cumulus parameterization (in the 54- and 18-km do-
mains only), and the Rapid Radiative Transfer Model
for GCMs (RRTMG; Iacono et al. 2008) package for
longwave and shortwave radiation.
For selected events (February 2013 and May 2014) and

physics ensemblemembers (Noah–YSUandPX–ACM2),
the sensitivity to random perturbations was assessed via
ensembles created with WRF’s stochastic kinetic energy
backscatter scheme (SKEBS) option (Shutts 2005;
Berner et al. 2011). This technique inserts random noise
perturbations into the rotational horizontal wind com-
ponents and the potential temperature field where and
when turbulence is diagnosed. Each SKEBS ensemble
consisted of one control run and 20 perturbed members,
created by varying the random number seed used as
input to the SKEBS procedure. SKEBS has several

alterable parameters, and the standard or recommended
values were adopted.
As discussed in CF16 and FC17, model-forecasted

winds from 10m above ground level (AGL) were ad-
justed using the stability-dependent logarithmic wind
profile to the SDG&E anemometer height (6.1m) be-
fore hourly verifications against observed sustained
winds were conducted. Mean absolute error (MAE) and
bias statistics were again used to assess how close
pointwise model predictions fj,i were to their corre-
sponding observations yj,i. The MAE and bias are
defined for station j and time i as

MAE
i,j 5 jf

j,i 2 y
j,ij (1)

and

bias
i,j 5 ( f

j,i 2 y
j,i). (2)

CF16 reported that shifting the lowest model level
downward to match the SDG&E anemometer height
was not found to be sufficiently helpful to justify the
increased computational cost (in the form of shorter
time steps) for some physics combinations, and herein
we employ the default value of roughly 27m AGL.
Particularly in the next section, our main emphasis will
be on network- and/or event-averaged winds for the 135
SDG&E stations that are common to all six events.

3. Sensitivity tests: Model physics, stochastic
perturbations, and surface roughnesses

In this section, we reexamine and extend CF16’s
physics ensemble for the February 2013 event, assess the
sensitivity to stochastic perturbations and, with the aid
of physics tests for two other episodes, assess the influ-
ence of surface roughness on the simulated airflows and
forecast wind skill.

a. February 2013 event physics ensemble

CF16 selected the PX–ACM2 LSM–PBL combina-
tion because it minimized the forecast MAE and bias of
the network-averaged sustained wind over multiple
events and faithfully captured the temporal evolution
and spatial variation of the flow during the February
2013 episode. In contrast, most other configurations
systematically overpredicted the observed winds with
respect to intensity (e.g., Fig. 17 in CF16) and/or offshore
wind extent. The former is also illustrated in Fig. 2, which
compares time series of network-averaged sustained wind
for the February 2013 episode from the PX–ACM2 con-
figuration with a more commonly used pair (Noah–YSU).

TABLE 1. Santa Ana wind events studied and their model ini-
tialization time. Here, Y denotes the event was used to create
a physics ensemble and N denotes the event was not used for cre-
ating a physics ensemble.

Event
Initialization time

and date
Used in the

physics ensemble?

14–16 Feb 2013 1200 UTC 14 Feb Y
4–6 Oct 2013 0600 UTC 3 Oct Y
29 Apr–1 May 2014 0600 UTC 29 Apr N
13–15 May 2014 0600 UTC 13 May Y
23–25 Jan 2015 1200 UTC 23 Jan N
11–13 Feb 2015 1200 UTC 11 Feb N
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Physics ensembles consisted of combinations of 5 land 
surface models (LSM) and 10 boundary layer (PBL) schemes. 



2010), Grenier–Bretherton–McCaa (GBM; Grenier and
Bretherton 2001), and Medium-Range Forecast Model
(MRF; Hong and Pan 1996) options. For each PBL
scheme, the recommended and/or most frequently
adopted surface-layer parameterization was employed.
Some of the combinations were not workable, which left
us with a total of 48 viable ensemble members. As in
CF16, horizontal diffusion along the model surfaces was
deactivated, and the MODIS land-use database was
adopted. In contrast with Wilson and Fovell (2016),
horizontal diffusion was not found to substantially influ-
ence our results or conclusions (cf. Cao 2015, CF16).
As part of this work, the available topo_wind options
were evaluated and determined to be unhelpful.
Unsurprisingly, given the weather associated with

Santa Ana events, we found that the downslope wind-
storms were not very sensitive to the treatment of the
microphysics or cumulus convection, and the influence
of the radiation parameterization was also small.
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the WRF single-moment 3-class microphysics scheme
(Hong et al. 2004), a simple ice-bearing scheme suitable
for mesoscale grid sizes, the Kain–Fritsch (Kain 2004)
cumulus parameterization (in the 54- and 18-km do-
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for GCMs (RRTMG; Iacono et al. 2008) package for
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ensembles created with WRF’s stochastic kinetic energy
backscatter scheme (SKEBS) option (Shutts 2005;
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ponents and the potential temperature field where and
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consisted of one control run and 20 perturbed members,
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input to the SKEBS procedure. SKEBS has several

alterable parameters, and the standard or recommended
values were adopted.
As discussed in CF16 and FC17, model-forecasted

winds from 10m above ground level (AGL) were ad-
justed using the stability-dependent logarithmic wind
profile to the SDG&E anemometer height (6.1m) be-
fore hourly verifications against observed sustained
winds were conducted. Mean absolute error (MAE) and
bias statistics were again used to assess how close
pointwise model predictions fj,i were to their corre-
sponding observations yj,i. The MAE and bias are
defined for station j and time i as
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CF16 reported that shifting the lowest model level
downward to match the SDG&E anemometer height
was not found to be sufficiently helpful to justify the
increased computational cost (in the form of shorter
time steps) for some physics combinations, and herein
we employ the default value of roughly 27m AGL.
Particularly in the next section, our main emphasis will
be on network- and/or event-averaged winds for the 135
SDG&E stations that are common to all six events.

3. Sensitivity tests: Model physics, stochastic
perturbations, and surface roughnesses

In this section, we reexamine and extend CF16’s
physics ensemble for the February 2013 event, assess the
sensitivity to stochastic perturbations and, with the aid
of physics tests for two other episodes, assess the influ-
ence of surface roughness on the simulated airflows and
forecast wind skill.

a. February 2013 event physics ensemble

CF16 selected the PX–ACM2 LSM–PBL combina-
tion because it minimized the forecast MAE and bias of
the network-averaged sustained wind over multiple
events and faithfully captured the temporal evolution
and spatial variation of the flow during the February
2013 episode. In contrast, most other configurations
systematically overpredicted the observed winds with
respect to intensity (e.g., Fig. 17 in CF16) and/or offshore
wind extent. The former is also illustrated in Fig. 2, which
compares time series of network-averaged sustained wind
for the February 2013 episode from the PX–ACM2 con-
figuration with a more commonly used pair (Noah–YSU).

TABLE 1. Santa Ana wind events studied and their model ini-
tialization time. Here, Y denotes the event was used to create
a physics ensemble and N denotes the event was not used for cre-
ating a physics ensemble.

Event
Initialization time

and date
Used in the

physics ensemble?

14–16 Feb 2013 1200 UTC 14 Feb Y
4–6 Oct 2013 0600 UTC 3 Oct Y
29 Apr–1 May 2014 0600 UTC 29 Apr N
13–15 May 2014 0600 UTC 13 May Y
23–25 Jan 2015 1200 UTC 23 Jan N
11–13 Feb 2015 1200 UTC 11 Feb N
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The PX–ACM2 reconstruction is clearly superior, at least
after the first 12h, and its event- and network-averaged
sustained wind bias was 0.07ms21, lower than Noah–
YSU’s 1.48ms21.
Highlighted inCF16 (see their Fig. 6) was the persistent

jumplike feature in the flow through the Santa Ysabel
area (boxed area in Fig. 1) that appeared in the surface
observations as weaker downslope winds (and, occa-
sionally, reversed or upslope flow) at stationWCK than at
neighboring stations both up (WSY) and downhill (SSO).
Figure 3 presents wind speeds averaged over a 4-h period,
spanning the time of WSY’s first peak gust (around 1800
UTC 15 February 2013) and WCK’s first wind reversals.
The flow can be presumed to be easterly (from right to
left) nearly everywhere. The PX–ACM2 (Fig. 3a) and
Noah–YSU (Fig. 3b) members both developed hydraulic
jumps but positioned them differently. In the former, the
jump was well formed and centered over WCK, and the
winds were stronger both uphill and downhill ofWCK, as
was observed. The Noah–YSU simulation’s jump was
shifted somewhat downslope, resulting in higher winds at
WCK than SSO, contrary to the observations. A jump
was barely evident in the TD–YSU simulation as its
temporally averagedwindswere high at nearly all stations
(Fig. 3c). The fourth configuration shown (Fig. 3d) will be
discussed in section 3c.
Figure 4a shows the mean wind speed and potential

temperature fields from the 48-member physics ensem-
ble for the February 2013 event, computed for the same
4-h period as shown in Fig. 3. Owing to variations in
position among the members, as well as its absence in

some (such as TD–YSU), the jump feature was virtually
absent in the ensemble average. The ensemble standard
deviation was largest for both wind speed and potential
temperature above WCK (Fig. 4c), where the jump was
observed to occur. In contrast, the variation above
WSY, where the highest winds in this cross section were
recorded, was negligible.
Focusing on the model-diagnosed 10-m winds1 aver-

aged over the same 4-h interval (Fig. 5a), we note that
the variation among the 48 ensemblemembers was quite
small upwind of, and even beyond, the ridge, at least
until the easterly flow passed station WSY. From that
point downhill, the variation became quite substantial
(2–18ms21). As suggested by the figure, only a subset of
the physics ensemble members captured the weak winds
associated with the jump observed at or very nearWCK.
Although not shown, we note that the region of largest
variation on the lee side for the 4-h window around the
peak of the second phase (during which time a jump did
not appear in the observations) was found relatively
farther down the slope, and there was slightly more
spread in the flow on the east side of the ridge, perhaps
reflecting the natural tendency for nonlinear simulations
to diverge over time.
Figure 6a displays the event- and network-averaged

6.1-m forecast wind bias versus MAE for the February

FIG. 2. Time series of network-averaged observed (black dots) and predicted (blue, PX–ACM2 control run;
green, Noah–YSU control run) 6.1-m sustained winds (m s21) for the 14–16 Feb 2013 event. The gray and
light green plumes reveal the ensemble spread created via SKEBS perturbations.

1 As this is a comparison among ensemble members, adjustment
of these winds to the SDG&E anemometer height was not
necessary.
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Two model configurations

2010), Grenier–Bretherton–McCaa (GBM; Grenier and
Bretherton 2001), and Medium-Range Forecast Model
(MRF; Hong and Pan 1996) options. For each PBL
scheme, the recommended and/or most frequently
adopted surface-layer parameterization was employed.
Some of the combinations were not workable, which left
us with a total of 48 viable ensemble members. As in
CF16, horizontal diffusion along the model surfaces was
deactivated, and the MODIS land-use database was
adopted. In contrast with Wilson and Fovell (2016),
horizontal diffusion was not found to substantially influ-
ence our results or conclusions (cf. Cao 2015, CF16).
As part of this work, the available topo_wind options
were evaluated and determined to be unhelpful.
Unsurprisingly, given the weather associated with

Santa Ana events, we found that the downslope wind-
storms were not very sensitive to the treatment of the
microphysics or cumulus convection, and the influence
of the radiation parameterization was also small.
Therefore, all simulations examined herein employed
the WRF single-moment 3-class microphysics scheme
(Hong et al. 2004), a simple ice-bearing scheme suitable
for mesoscale grid sizes, the Kain–Fritsch (Kain 2004)
cumulus parameterization (in the 54- and 18-km do-
mains only), and the Rapid Radiative Transfer Model
for GCMs (RRTMG; Iacono et al. 2008) package for
longwave and shortwave radiation.
For selected events (February 2013 and May 2014) and

physics ensemblemembers (Noah–YSUandPX–ACM2),
the sensitivity to random perturbations was assessed via
ensembles created with WRF’s stochastic kinetic energy
backscatter scheme (SKEBS) option (Shutts 2005;
Berner et al. 2011). This technique inserts random noise
perturbations into the rotational horizontal wind com-
ponents and the potential temperature field where and
when turbulence is diagnosed. Each SKEBS ensemble
consisted of one control run and 20 perturbed members,
created by varying the random number seed used as
input to the SKEBS procedure. SKEBS has several

alterable parameters, and the standard or recommended
values were adopted.
As discussed in CF16 and FC17, model-forecasted

winds from 10m above ground level (AGL) were ad-
justed using the stability-dependent logarithmic wind
profile to the SDG&E anemometer height (6.1m) be-
fore hourly verifications against observed sustained
winds were conducted. Mean absolute error (MAE) and
bias statistics were again used to assess how close
pointwise model predictions fj,i were to their corre-
sponding observations yj,i. The MAE and bias are
defined for station j and time i as

MAE
i,j 5 jf

j,i 2 y
j,ij (1)

and

bias
i,j 5 ( f

j,i 2 y
j,i). (2)

CF16 reported that shifting the lowest model level
downward to match the SDG&E anemometer height
was not found to be sufficiently helpful to justify the
increased computational cost (in the form of shorter
time steps) for some physics combinations, and herein
we employ the default value of roughly 27m AGL.
Particularly in the next section, our main emphasis will
be on network- and/or event-averaged winds for the 135
SDG&E stations that are common to all six events.

3. Sensitivity tests: Model physics, stochastic
perturbations, and surface roughnesses

In this section, we reexamine and extend CF16’s
physics ensemble for the February 2013 event, assess the
sensitivity to stochastic perturbations and, with the aid
of physics tests for two other episodes, assess the influ-
ence of surface roughness on the simulated airflows and
forecast wind skill.

a. February 2013 event physics ensemble

CF16 selected the PX–ACM2 LSM–PBL combina-
tion because it minimized the forecast MAE and bias of
the network-averaged sustained wind over multiple
events and faithfully captured the temporal evolution
and spatial variation of the flow during the February
2013 episode. In contrast, most other configurations
systematically overpredicted the observed winds with
respect to intensity (e.g., Fig. 17 in CF16) and/or offshore
wind extent. The former is also illustrated in Fig. 2, which
compares time series of network-averaged sustained wind
for the February 2013 episode from the PX–ACM2 con-
figuration with a more commonly used pair (Noah–YSU).

TABLE 1. Santa Ana wind events studied and their model ini-
tialization time. Here, Y denotes the event was used to create
a physics ensemble and N denotes the event was not used for cre-
ating a physics ensemble.

Event
Initialization time

and date
Used in the

physics ensemble?

14–16 Feb 2013 1200 UTC 14 Feb Y
4–6 Oct 2013 0600 UTC 3 Oct Y
29 Apr–1 May 2014 0600 UTC 29 Apr N
13–15 May 2014 0600 UTC 13 May Y
23–25 Jan 2015 1200 UTC 23 Jan N
11–13 Feb 2015 1200 UTC 11 Feb N
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2013 event, augmenting CF16’s Fig. 17. (The quasi-
linear relationship between these two metrics is antici-
pated.) Most physics ensemble members had a mean
positive bias and also a larger MAE than the selected
configuration, PX–ACM2, even following careful ad-
justments to the mesonet’s 6.1-m anemometer mounting
height. The result is clearly driven by the choice of LSM
(differentiated by dot color) rather than the PBL
scheme. The commonly employed Noah–YSU combi-
nation placed about average for this event, selecting TD
resulted in most of the highest biases and mean absolute
errors, and the RUC runs as a group were second best.

b. Sensitivity to model random perturbations
(February 2013 and May 2014 events)

Prior to examining the physics ensembles for two
other Santa Ana episodes, we will explore the effects of
stochastic perturbations on wind speed patterns for the
February 2013 and May 2014 events (including jump
formation in the former).
Minimizing wind forecast errors entails determining

wind speeds accurately at the right places and times.

Although we are dealing with network-averaged
quantities here, it might be anticipated that simulations
that do not capture the jump, or do not position it cor-
rectly, will have relatively higher errors. It might be
further anticipated that feature is also susceptible to
noise or other perturbations. This is investigated
using SKEBS-based ensembles, consisting of 20
members each for the Noah–YSU and PX–ACM2
configurations.
Figures 4b and 4d show that, by itself, applying per-

turbations to a single physics member, Noah–YSU,
for the February 2013 event, generated qualitatively
and even quantitatively comparable variations in wind
speed and potential temperature to those produced
by the physics ensemble during the jump period. Like
the physics ensemble as a whole, members in the
Noah–YSU SKEBS collection included runs in which
the jump was very pronounced and others in which
it failed to form (Fig. 5b), such that the feature dis-
appeared from the perturbation ensemblemean (Fig. 4b).
Therefore, at least part of the difference among the
physics ensemble members was due to chance, at

FIG. 3. Vertical cross sections of 4-h averaged horizontal wind speed (2.5m s21 contours and red shaded fields) and potential tem-
perature (thick black 5-K contours) for the 1500–1900 UTC 15 Feb 2013 event, taken west–east across station WSY for four physics
combinations: (a) PX–ACM2, (b) Noah–YSU, (c) TD–YSU, and (d) Noah–YSU–z0mod.
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FIG. 3. Vertical cross sections of 4-h averaged horizontal wind speed (2.5m s21 contours and red shaded fields) and potential tem-
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least as far as jump formation and its location are
concerned.
Figures 5c and 5d show the variation of 10-m winds

for the May 2014 event from its physics and Noah–YSU
SKEBS ensembles, respectively, again averaged over
the 4-h time period during which the winds on the lee
slope were strongest. The May case did not produce a
jump feature, either in the simulations or observations,
and the variability provoked by the perturbations was
rather small (Fig. 5d). The variation owing to the model
physics (Fig. 5c) remained, which was still substantial at
various places along the lee slope.
However, when averaged over the network, the

sensitivity to SKEBS-generated perturbations is seen
to have been relatively minor and was therefore
swamped by the physics differences, especially the se-
lection of the LSM. This is revealed for the February
2013 episode in Figs. 2 and 6a. All of the Noah–YSU
reconstructions generated larger mesonet-average
winds than any of the PX–ACM2 runs (including its
SKEBS-perturbedmembers), at least after the first 12 h
or so (Fig. 2). When plotted in bias versus MAE space
(Fig. 6a), we see that the values for the Noah–YSU
SKEBS runs (enclosed in the light blue ellipse) are
rather far removed from all of the PX–ACM2members

(including its SKEBS runs enclosed in the light
orange ellipse). Both figures also reveal that the
stochastic perturbations excited less variability with
the PX–ACM2 configuration.

c. The influence of surface roughness

Figure 7 summarizes the physics ensemble results with
respect to LSM, aggregated over three events (February
and October 2013 and May 2014) and representing
around 150 simulations in total. The boxplots are based
on physics ensemble MAEs and display their median
and first and third quartiles, with the whiskers identify-
ing the maximum and minimum values. A large spread
in MAE, such as that seen for TD and NoahMP,
indicates either more substantial sensitivity to the PBL
scheme and/or greater skill variation among events;
both are undesirable. Apart from a few outlying mem-
bers, the Noah LSM had less variable (but relatively
large) MAEs, while PX and RUC performed best in
these trials. The red line depicts average biases for the
LSMmembers, and it is seen that the bias was closest to
zero with the PX LSM.
The boxplot, however, obscures an interesting and re-

vealing finding. Figure 6 also shows results from the two
other events (4–6 October 2013 and 13–15 May 2014) for

FIG. 4. As in Fig. 3, but for (a) the physics and (b) Noah–YSU perturbation ensembles’ mean horizontal wind speed (shaded; m s21) and
potential temperature (contoured; K) fields, and (c) the physics and (d) Noah–YSU perturbation ensembles’ horizontal wind speed
(shaded; m s21) and potential temperature standard deviations (contoured; K).
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2013 event, augmenting CF16’s Fig. 17. (The quasi-
linear relationship between these two metrics is antici-
pated.) Most physics ensemble members had a mean
positive bias and also a larger MAE than the selected
configuration, PX–ACM2, even following careful ad-
justments to the mesonet’s 6.1-m anemometer mounting
height. The result is clearly driven by the choice of LSM
(differentiated by dot color) rather than the PBL
scheme. The commonly employed Noah–YSU combi-
nation placed about average for this event, selecting TD
resulted in most of the highest biases and mean absolute
errors, and the RUC runs as a group were second best.
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Prior to examining the physics ensembles for two
other Santa Ana episodes, we will explore the effects of
stochastic perturbations on wind speed patterns for the
February 2013 and May 2014 events (including jump
formation in the former).
Minimizing wind forecast errors entails determining
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rectly, will have relatively higher errors. It might be
further anticipated that feature is also susceptible to
noise or other perturbations. This is investigated
using SKEBS-based ensembles, consisting of 20
members each for the Noah–YSU and PX–ACM2
configurations.
Figures 4b and 4d show that, by itself, applying per-

turbations to a single physics member, Noah–YSU,
for the February 2013 event, generated qualitatively
and even quantitatively comparable variations in wind
speed and potential temperature to those produced
by the physics ensemble during the jump period. Like
the physics ensemble as a whole, members in the
Noah–YSU SKEBS collection included runs in which
the jump was very pronounced and others in which
it failed to form (Fig. 5b), such that the feature dis-
appeared from the perturbation ensemblemean (Fig. 4b).
Therefore, at least part of the difference among the
physics ensemble members was due to chance, at

FIG. 3. Vertical cross sections of 4-h averaged horizontal wind speed (2.5m s21 contours and red shaded fields) and potential tem-
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which multiphysics ensembles were made. Consistent
with the foregoing information, the errors clearly vary
systematically with LSM, and the PX–ACM2 configura-
tion remains one of the best choices in terms of
minimizing errors. Note, however, that the ordering of
LSMs with respect to skill shifts among the cases: for the
October 2013 event, the Noah LSM clearly resulted in
larger error than the other LSMs, with the Noah–YSU
member actually being the least skillful of all.
At first glance, this may appear to contradict the in-

formation shown in Fig. 7. However, note that unlike
NoahMP and TD, MAEs for the Noah subensemble
were relatively uniform among the three events, and
therefore the vertical extent of the Noah boxplot in
Fig. 7 is small. In contrast, the TD and NoahMP MAEs
varied more from event to event. TD, in particular,
performed worse than Noah in the February and May
cases but better for the October episode (Fig. 6).
This seasonal variation of forecast skill provided a

clue that helped reveal why the PX LSM performed best
among the five LSMs examined. The key difference lies

in the surface roughness lengths z0 applied to various
land-use types, especially MODIS land-use categories
6 and 7 (closed and open shrublands2) that constitute a
large (67.4%) fraction of the SDG&E network (see
Table 2). Most LSMs start with roughness information
provided in the LANDUSE.TBL and/or VEGPARM.
TBL tables in the WRF Model, although some schemes
subsequently make modifications. TD and NoahMP
used the default MODIS roughness length values de-
fined in the two tables, which vary abruptly from 0.01m
(November–April) to 0.06 and 0.05m (May–October)
for open and closed shrublands, respectively (Fig. 8;
Table 2). The Noah LSM internally creates an annual
cycle in z0 with more gradual transitions that is also
curiously shifted in phase from the default MODIS
values, with the lowest roughness (0.01m) in September

FIG. 5. Vertical cross sections taken west–east across WSY showing the ensemble mean (thick black line) and 61 standard deviations
(thin black lines) of the 4-h averaged horizontal 10-mwind speed (blue lines) for the first phase (1500–1900UTC) of the 15 Feb 2013 event
from the (a) physics and (b) Noah–YSU SKEBS ensembles. The same fields are also shown for the 1500–1900 UTC 14 May 2014 event
from the (c) physics and (d) Noah/YSU SKEBS ensembles. The gray-shaded area depicts topography, shown for reference only. Ap-
proximate locations of some SDG&E stations are indicated.

2 ‘‘Closed shrubland’’ is characterized by dense foliage cover
(70%–100%), while foliage for ‘‘open shrubland’’ is less dense
(30%–70%) (https://en.wikipedia.org/wiki/Shrubland).
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and the highest (0.05m for closed shrublands and 0.06m
for open shrublands) in April. In contrast, PX and RUC
assigned temporally constant and relatively high
roughness length values of 0.15 and 0.1m, respectively,
to both shrubland categories. Note that the specified z0
values used for a particular location are influenced by
model grid interpolation and possibly other factors.
As a test, we modified the Noah LSM to utilize the

same surface roughness values of each land-use type
employed by PX (Table 2), which meant removing
the seasonal cycle and increasing z0 values for most cat-
egories, especially the open and closed shrublands that
dominate the SanDiego County landscape. Themodified
Noah simulations, dubbed ‘‘Noah–YSU–z0mod’’ (Fig. 6),
were very competitive with respect to event- and
network-averaged bias and MAE, with near-to-zero
biases and much smaller MAEs (comparable to PX’s).
Note that the revised Noah LSM also produced a
temporally averaged airflow during the jump phase
for the February 2013 event (Fig. 3d) that closely re-
sembles that established by PX–ACM2 (Fig. 3a).
During this time period, TD and NoahMP presumed
the smoothest shrublands (z0 5 0.01m; Fig. 8) and
were unable to capture the jump (as shown for the
TD–YSU case in Fig. 3c). This leads us to the reasonable
conclusion that surface roughness is a principal control of
airflow on the lee slope, which may have implications
for improving operational wind forecasts overall and at
specific locations.
Thus, at least for our region of interest and present

model configurations, wind forecast skill using the Noah
LSM can be greatly improved by adopting roughness
lengths employed by the PX scheme. As the Noah
scheme has some advantages, especially with respect to
2-m temperature and dewpoint temperature forecast skills
(not shown), the revised Noah LSM, Noah–YSU–z0mod,
emerges as one of the most skillful configurations

FIG. 6. Scatterplots of network- and event-averaged 6.1-m sus-
tained wind bias vs MAE (both m s21) from the 48 physics en-
semble members for the (a) 14–16 Feb 2013, (b) 4–6 Oct 2013, and
(c) 13–15May 2014 episodes, color coded by LSM. Small black dots
in (a) show SKEBS perturbation ensemble members made for the
PX–ACM2 and Noah–YSU configurations, respectively. Runs
PX–ACM2, Noah–YSU, and Noah–YSU–z0mod are marked. For
members using the MYJ PBL scheme, the standard but cosmetic
recalculation of the near-surface winds was removed (see CF16).

FIG. 7. Boxplots summarizing physics ensemble MAE (m s21)
distributions stratified by LSM, displaying the median, first quar-
tile, and third quartile values, with the whiskers identifying minima
and maxima. The superposed red dotted line depicts their mean
biases (m s21).
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least as far as jump formation and its location are
concerned.
Figures 5c and 5d show the variation of 10-m winds

for the May 2014 event from its physics and Noah–YSU
SKEBS ensembles, respectively, again averaged over
the 4-h time period during which the winds on the lee
slope were strongest. The May case did not produce a
jump feature, either in the simulations or observations,
and the variability provoked by the perturbations was
rather small (Fig. 5d). The variation owing to the model
physics (Fig. 5c) remained, which was still substantial at
various places along the lee slope.
However, when averaged over the network, the

sensitivity to SKEBS-generated perturbations is seen
to have been relatively minor and was therefore
swamped by the physics differences, especially the se-
lection of the LSM. This is revealed for the February
2013 episode in Figs. 2 and 6a. All of the Noah–YSU
reconstructions generated larger mesonet-average
winds than any of the PX–ACM2 runs (including its
SKEBS-perturbedmembers), at least after the first 12 h
or so (Fig. 2). When plotted in bias versus MAE space
(Fig. 6a), we see that the values for the Noah–YSU
SKEBS runs (enclosed in the light blue ellipse) are
rather far removed from all of the PX–ACM2members

(including its SKEBS runs enclosed in the light
orange ellipse). Both figures also reveal that the
stochastic perturbations excited less variability with
the PX–ACM2 configuration.

c. The influence of surface roughness

Figure 7 summarizes the physics ensemble results with
respect to LSM, aggregated over three events (February
and October 2013 and May 2014) and representing
around 150 simulations in total. The boxplots are based
on physics ensemble MAEs and display their median
and first and third quartiles, with the whiskers identify-
ing the maximum and minimum values. A large spread
in MAE, such as that seen for TD and NoahMP,
indicates either more substantial sensitivity to the PBL
scheme and/or greater skill variation among events;
both are undesirable. Apart from a few outlying mem-
bers, the Noah LSM had less variable (but relatively
large) MAEs, while PX and RUC performed best in
these trials. The red line depicts average biases for the
LSMmembers, and it is seen that the bias was closest to
zero with the PX LSM.
The boxplot, however, obscures an interesting and re-

vealing finding. Figure 6 also shows results from the two
other events (4–6 October 2013 and 13–15 May 2014) for

FIG. 4. As in Fig. 3, but for (a) the physics and (b) Noah–YSU perturbation ensembles’ mean horizontal wind speed (shaded; m s21) and
potential temperature (contoured; K) fields, and (c) the physics and (d) Noah–YSU perturbation ensembles’ horizontal wind speed
(shaded; m s21) and potential temperature standard deviations (contoured; K).
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and the highest (0.05m for closed shrublands and 0.06m
for open shrublands) in April. In contrast, PX and RUC
assigned temporally constant and relatively high
roughness length values of 0.15 and 0.1m, respectively,
to both shrubland categories. Note that the specified z0
values used for a particular location are influenced by
model grid interpolation and possibly other factors.
As a test, we modified the Noah LSM to utilize the

same surface roughness values of each land-use type
employed by PX (Table 2), which meant removing
the seasonal cycle and increasing z0 values for most cat-
egories, especially the open and closed shrublands that
dominate the SanDiego County landscape. Themodified
Noah simulations, dubbed ‘‘Noah–YSU–z0mod’’ (Fig. 6),
were very competitive with respect to event- and
network-averaged bias and MAE, with near-to-zero
biases and much smaller MAEs (comparable to PX’s).
Note that the revised Noah LSM also produced a
temporally averaged airflow during the jump phase
for the February 2013 event (Fig. 3d) that closely re-
sembles that established by PX–ACM2 (Fig. 3a).
During this time period, TD and NoahMP presumed
the smoothest shrublands (z0 5 0.01m; Fig. 8) and
were unable to capture the jump (as shown for the
TD–YSU case in Fig. 3c). This leads us to the reasonable
conclusion that surface roughness is a principal control of
airflow on the lee slope, which may have implications
for improving operational wind forecasts overall and at
specific locations.
Thus, at least for our region of interest and present

model configurations, wind forecast skill using the Noah
LSM can be greatly improved by adopting roughness
lengths employed by the PX scheme. As the Noah
scheme has some advantages, especially with respect to
2-m temperature and dewpoint temperature forecast skills
(not shown), the revised Noah LSM, Noah–YSU–z0mod,
emerges as one of the most skillful configurations

FIG. 6. Scatterplots of network- and event-averaged 6.1-m sus-
tained wind bias vs MAE (both m s21) from the 48 physics en-
semble members for the (a) 14–16 Feb 2013, (b) 4–6 Oct 2013, and
(c) 13–15May 2014 episodes, color coded by LSM. Small black dots
in (a) show SKEBS perturbation ensemble members made for the
PX–ACM2 and Noah–YSU configurations, respectively. Runs
PX–ACM2, Noah–YSU, and Noah–YSU–z0mod are marked. For
members using the MYJ PBL scheme, the standard but cosmetic
recalculation of the near-surface winds was removed (see CF16).

FIG. 7. Boxplots summarizing physics ensemble MAE (m s21)
distributions stratified by LSM, displaying the median, first quar-
tile, and third quartile values, with the whiskers identifying minima
and maxima. The superposed red dotted line depicts their mean
biases (m s21).
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of all. For simplicity, however, the PX–ACM2 com-
bination remains the control model configuration
for the remainder of this study. Finally, we note
in passing that both versions of the topo_wind
option have been found to reduce the high wind
bias of the standard Noah–YSU configuration, but
generally resulted in underforecasted winds (cf.
Cao 2015).

4. Wind forecast bias analysis for individual
stations

This section utilizes a composite of six Santa
Ana events, adding the 29 April–1 May 2014, 23–25
January 2015, and 11–13 February 2015 events (Table 1)
to the three considered for the physics ensemble.
Again, each simulation is 54 h long and comparisons
with observations were performed hourly, so the
composite dataset consisted of 324 observation times,
initialization times having been excluded.
Figure 9a shows average forecast wind biases for the

composite at the 135 SDG&E stations common to all
six events in rank order. As with the similar figure
shown for the February 2013 event in CF16 (their
Fig. 10d), the average bias is nearly zero among the
stations, but systematic errors exist in that some loca-
tions are persistently either overpredicted (red) or
underpredicted (blue) with respect to the event-
averaged winds.3 The spatial distribution of the com-
posite biases (Fig. 10) reveals that some clustering is
evident, but stations with a wide range of biases can be
found in close proximity, such as in the region around
WSY that is highlighted in the inset at the top-right cor-
ner. This suggests that very localized conditions (e.g., a

single tree, a tiny hill), representing landforms not re-
solvable even on the 667-m grid utilizing the ;10-m
USGS database (cf. CF16), may be responsible for much
of these persistent biases. The locations of stations iden-
tified by name in Fig. 9a are also indicated in Fig. 10.
Station rankings for the observations and selected

simulations are combined in Fig. 9b. The station order-
ing is not necessarily the same for each, as this plot is
intended to compare the relative distributions of aver-
aged wind speeds across the network. The observed
distribution has a ‘‘hockey stick’’ shape with a blade
composed of eight stations (6% of the network) with
sustained winds greater than 9m s21. The standard PX–
ACM2 case (thick black line), with 667-m grid spacing
over much of the network, compares quite well with the
observations (red line), although its somewhat flatter
shape and shorter blade again mean that there was some
overprediction at sites with relatively slower wind
speeds to go along with the windiest locations that were
underforecasted. Shown for contrast are rankings from
simulations made at 10-km grid spacing for PX–ACM2
and Noah–YSU that overpredicted the winds nearly
everywhere, except for the few top wind locations. CF16
demonstrated that resolution influences the resolved
shape of the topography, and overly smooth resolved
terrain using a horizontal grid spacing larger than 2km
exaggerates the horizontal extent of the downslope
winds (see their Fig. 16).
An analysis of the source of the forecast biases is

presented in Fig. 11, in which each dot on the scatter-
plots represents an individual station. First of all, fore-
cast wind bias is not a function (coefficient of variation
R2 5 0.00) of the forecast wind strength itself (Fig. 11a),
at least when aggregated over the 324 hourly forecasts
for each station. However, forecast bias is systematically
related to (and negatively correlated with) the observed
wind, with R2 5 0.45 (Fig. 11b). As in CF16, which dis-
cussed the same issue with respect to the February 2013

TABLE 2. Default roughness lengths (m) employed by land surface schemes for MODIS land-use (LU) categories occurring in the
SDG&E network. Water areas of the 2-km nest are excluded.

MODIS
LU index

Land
fraction (%) PX

Noah
(February)

MODIS
(winter)

Noah
(October)

Noah
(May)

MODIS
(summer) Type

1 8.2 1 0.5 0.5 0.5 0.5 0.5 Evergreen needleleaf forest
2 0.7 0.9 0.5 0.5 0.5 0.5 0.5 Evergreen broadleaf forest
5 11.1 1 0.3 0.2 0.23 0.5 0.5 Mixed forests
6 8.2 0.15 0.03 0.01 0.02 0.05 0.05 Closed shrublands
7 59.2 0.15 0.04 0.01 0.02 0.06 0.06 Open shrublands
8 0.7 0.25 0.05 0.01 0.06 0.05 0.05 Woody savannas
9 0.7 0.15 0.10 0.15 0.1 0.1 0.15 Savannas
10 3.0 0.07 0.1 0.1 0.2 0.1 0.12 Grasslands
13 8.2 0.8 0.5 0.8 0.5 0.5 0.8 Urban

3 This is true for our topo_wind simulations as well (not shown),
so that option does not mitigate this issue.
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surface roughnesses to be more severely underpredicted
(Fig. 11e). While the overall relationship between bias
and z0 is not large (R

25 0.17, r520.41), note that of the
17 stations with z0 . 0.7m, only two [Julian (JUL),

which is forested, and El Monte (ELM), in an urbanized
area; Fig. 10] do not have a negative bias. Indeed, this
subset has an average forecast bias of 23.4m s21, while
it is 10.25ms21 for the remaining 118 stations. This

FIG. 9. (a) Sustained wind bias (m s21) for PX–ACM2 simulations, (b) sustained winds (red,
observed; black, PX–ACM2667m; dark gray, PX–ACM210km; and light gray,Noah–YSU10km;
m s21), and (c) gusts (red, observed; black, forecasted using PX–ACM2; m s21), all averaged over
six SantaAna events (seeTable 1), in station rankorderwith selected stations identified in (a), color
coded by sign of the bias. Only the 135 stations available for all six events are included.
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suggests that while network forecasts benefited from the
PX scheme’s assumptions regarding surface roughness,
the highest z0 assignments are probably excessive.
The 17 stations with roughness lengths exceeding

0.7m are identified with red markers in Fig. 11d. These
represent two basic land-use types: 11 are associated
with forests (categories 1, 2, and 5 from Table 2) and six
with urban land (category 13). Personal site inspections
and discussions with a meteorologist at SDG&E
(S. Vanderburg 2016–17, personal communications)
have reinforced the idea that at least some of the forest
assignments appear inappropriate or outdated, if only
owing to the effect of extensive wildfires (e.g., the 2003
Cedar fire and the 2007 Witch and other nearby fires)
that have significantly altered the landscape.
In postprocessing, we recomputed the winds for 10

forested locations (excluding JUL), presuming a more
moderate (and empirically selected) surface roughness
of 0.45m, which is more comparable to those employed
by the Noah LSM (Table 2) for these sites. This modi-
fication improved the 17-station subset’s average bias
from 23.4 to 20.6m s21 and raised the overall R2 from
0.48 to 0.56 (Fig. 11f). Some of these stations remain
outliers, and the names for the more obvious ones are
marked in the figure. These include VCM, Otay
Mountain (OTM), Sill Hill (SIL), and Lucky Five Ranch
(LFR), which are situated on hilltops or very close to

steep (and largely unresolved) ravines, which may play
significant roles in their relatively large sustained winds.
Further adjustments could be pursued, but the need is
not apparent and the benefits are likely small. These
z0-adjusted forecasts are used in the next section.
The least squares fit shown in Fig. 11f (which includes

the outliers) was used to predict forecast bias for the ob-
served GF, and the residuals from this model are shown
in Fig. 11g, plotted against the observed wind. In contrast
to Fig. 11b, no signal of the observed wind remains after
the bias explained by the station GF has been removed
(R25 0.02). This indicates to us that the GF variation from
the network mean serves as a useful proxy for local site ex-
posure issues, such that, after relatively minor adjustments
to z0 for a handful of sites, the systematic and persistent
forecast biases seen in Figs. 9a and 11b essentially reflected
unavoidable errors to be remedied in postprocessing.

5. A gust parameterization for the SDG&E
network and its stations

Numerical models of the present type do not resolve
short-period (;3 s) gusts, because they cannot directly
capture the turbulent motions that these wind bursts
represent. This is true even if the model employs a time
step on the order of a few seconds, as model filters will
still act to suppress variations with time scales of less

FIG. 10. Spatial distribution of six-event-average 6.1-m sustained wind bias (m s21), color
coded as indicated. The average bias over the entire SDG&Enetwork is around 0m s21. Inset
shows the subset of the 135 stations in the Santa Ysabel vicinity. The locations of stations
mentioned by name in the text and/or figures are identified.
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suggests that while network forecasts benefited from the
PX scheme’s assumptions regarding surface roughness,
the highest z0 assignments are probably excessive.
The 17 stations with roughness lengths exceeding

0.7m are identified with red markers in Fig. 11d. These
represent two basic land-use types: 11 are associated
with forests (categories 1, 2, and 5 from Table 2) and six
with urban land (category 13). Personal site inspections
and discussions with a meteorologist at SDG&E
(S. Vanderburg 2016–17, personal communications)
have reinforced the idea that at least some of the forest
assignments appear inappropriate or outdated, if only
owing to the effect of extensive wildfires (e.g., the 2003
Cedar fire and the 2007 Witch and other nearby fires)
that have significantly altered the landscape.
In postprocessing, we recomputed the winds for 10

forested locations (excluding JUL), presuming a more
moderate (and empirically selected) surface roughness
of 0.45m, which is more comparable to those employed
by the Noah LSM (Table 2) for these sites. This modi-
fication improved the 17-station subset’s average bias
from 23.4 to 20.6m s21 and raised the overall R2 from
0.48 to 0.56 (Fig. 11f). Some of these stations remain
outliers, and the names for the more obvious ones are
marked in the figure. These include VCM, Otay
Mountain (OTM), Sill Hill (SIL), and Lucky Five Ranch
(LFR), which are situated on hilltops or very close to

steep (and largely unresolved) ravines, which may play
significant roles in their relatively large sustained winds.
Further adjustments could be pursued, but the need is
not apparent and the benefits are likely small. These
z0-adjusted forecasts are used in the next section.
The least squares fit shown in Fig. 11f (which includes

the outliers) was used to predict forecast bias for the ob-
served GF, and the residuals from this model are shown
in Fig. 11g, plotted against the observed wind. In contrast
to Fig. 11b, no signal of the observed wind remains after
the bias explained by the station GF has been removed
(R25 0.02). This indicates to us that the GF variation from
the network mean serves as a useful proxy for local site ex-
posure issues, such that, after relatively minor adjustments
to z0 for a handful of sites, the systematic and persistent
forecast biases seen in Figs. 9a and 11b essentially reflected
unavoidable errors to be remedied in postprocessing.

5. A gust parameterization for the SDG&E
network and its stations

Numerical models of the present type do not resolve
short-period (;3 s) gusts, because they cannot directly
capture the turbulent motions that these wind bursts
represent. This is true even if the model employs a time
step on the order of a few seconds, as model filters will
still act to suppress variations with time scales of less

FIG. 10. Spatial distribution of six-event-average 6.1-m sustained wind bias (m s21), color
coded as indicated. The average bias over the entire SDG&Enetwork is around 0m s21. Inset
shows the subset of the 135 stations in the Santa Ysabel vicinity. The locations of stations
mentioned by name in the text and/or figures are identified.
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than several minutes. Because of this, it is most sensible
to compare model outputs to observed sustained winds
and construct a reasonable gust parameterization. In this
section, we pursue a simple gust model for individual
stations and the SDG&E mesonet as a whole.

a. Station wind and gust predictions

Figure 12a presents the relationship between ob-
served sustained winds and gusts for the six-event
composite dataset, each point representing an SDG&E
station’s values after averaging over the 324 hourly ob-
servations. The no-intercept least squares fit to the
entire dataset yields a slope (or GF) of 1.7 with an R2 of
0.89. This suggests that adequate forecasts of sustained
winds could result in skillful predictions of observed
gusts in a simple manner via a constant gust factor, that
being 1.7 in the present example. The relationship
between the composite-averaged forecasted versus ob-
served sustained winds is nearly 1:1 (Fig. 12b), despite
the previously discussed tendency to overforecast sites
with slower winds and underforecast those with stronger
average values. The systematic bias has mainly served to
increase the scatter (R2 5 0.62).
Using the average forecasted winds to predict the

observed gusts instead (Fig. 12c) also results in a slope of
very nearly 1.7, but with an even larger R2 (0.75) than
that associated with the relationship between forecasted
and observed winds. The noticeable decrease in scatter
occurred precisely because some of the systematic biases
in the sustained wind forecasts have been mitigated via
the tacit presumption of a uniform gust factor. Recall
that we have hypothesized that GFs higher than the
all-station average (1.7) indicate locations that are
relatively more sheltered (resulting in model over-
prediction of the sustained winds), and that sites with
smaller than average GFs have local features that
contribute to underprediction. The unresolvable local
exposure issues that made the forecasted winds either
too high or low have less impact when those same winds
are used to anticipate gusts, which are ostensibly less
influenced by those issues.
As a consequence, biased forecasts for the observed

sustained winds can be used to make unbiased estimates
of the observed gusts. This is demonstrated in Figs. 12d
and 9c, which now plot forecasted versus observed gusts.
The gust predictions were made by multiplying the
sustained wind prediction for each site by a single,
constant GF of 1.7, as suggested by Fig. 12c. There are
still errors that could possibly be decreased via revisions
to terrain and/or land-use characteristics, but again at
this point the benefits are likely too small to justify
the effort.

b. Network-averaged wind and gust predictions

Next, we pursue a very similar strategy to make
predictions of network-averaged gusts from network-
averaged sustained wind forecasts. Each point in
Fig. 13a now represents one of the 324 observa-
tion times from the six Santa Ana wind events. Re-
markably, after averaging over the 135-station
network, the relationship between the observed winds
and gusts has virtually no dispersion, with an R2 of
0.99 and a slope of 1.7. Each station has its own GF at
each point in time, which can vary for a variety of
reasons (see below), but it remains that when these
324 network-averaged wind and gust pairs are plotted,
there is no scatter.
This curious finding is not just a characteristic of

Santa Ana wind events, as illustrated in Fig. 13b, which
shows network-averaged winds versus gusts every
10min over 12 consecutive months. Again, each of the
51 940 points on the plot represents a wind and a gust
averaged over 135 stations at a single instant in time.
Obviously, this 1-yr period contains a wide variety of
weather conditions and surface wind directions, and
yet the slope (1.7) and the R2 (0.99) have remained
unchanged. At each station, the GF may shift with the
magnitude of the sustained wind, type of weather, and
time of day and year, but when these data are com-
bined into network averages, the variation is found
to vanish.
Why this result has been obtained is not entirely

understood. [This finding was first reported in Fovell
and Cao (2014), and Cao and Fovell (2015) and
Gallagher (2016) have demonstrated that this very low
scatter also occurs in other homogeneous observa-
tional networks, such as the Dugway Proving Ground
Mesonet in Utah, the NOAA/Air Resources Labora-
tory Field Research Division Mesonet in Idaho, and
the Delaware Environmental Observing System Mes-
onet.] It is noted that, unlike some other networks or
combinations of networks, the SDG&E mesonet is
nearly homogeneous with respect to instrumentation,
age of facilities, anemometer mounting height, and
station-siting philosophy. At a single station, the GF
can vary substantially with the sustained wind (e.g.,
FC17, their Fig. 3), but even at one site the variability
can be considerably reduced when the wind–gust pairs
are considered in bulk (not shown). The dispersion, as
measured by the R2 statistic, was already low, and this
is true at all sites in the mesonet. The network average
is then obtained by integrating over this collection of
station datasets, each with relatively low dispersion.
Perhaps this is simply a manifestation of ‘‘central ten-
dency,’’ given that the network is nearly static, with neither
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than several minutes. Because of this, it is most sensible
to compare model outputs to observed sustained winds
and construct a reasonable gust parameterization. In this
section, we pursue a simple gust model for individual
stations and the SDG&E mesonet as a whole.

a. Station wind and gust predictions

Figure 12a presents the relationship between ob-
served sustained winds and gusts for the six-event
composite dataset, each point representing an SDG&E
station’s values after averaging over the 324 hourly ob-
servations. The no-intercept least squares fit to the
entire dataset yields a slope (or GF) of 1.7 with an R2 of
0.89. This suggests that adequate forecasts of sustained
winds could result in skillful predictions of observed
gusts in a simple manner via a constant gust factor, that
being 1.7 in the present example. The relationship
between the composite-averaged forecasted versus ob-
served sustained winds is nearly 1:1 (Fig. 12b), despite
the previously discussed tendency to overforecast sites
with slower winds and underforecast those with stronger
average values. The systematic bias has mainly served to
increase the scatter (R2 5 0.62).
Using the average forecasted winds to predict the

observed gusts instead (Fig. 12c) also results in a slope of
very nearly 1.7, but with an even larger R2 (0.75) than
that associated with the relationship between forecasted
and observed winds. The noticeable decrease in scatter
occurred precisely because some of the systematic biases
in the sustained wind forecasts have been mitigated via
the tacit presumption of a uniform gust factor. Recall
that we have hypothesized that GFs higher than the
all-station average (1.7) indicate locations that are
relatively more sheltered (resulting in model over-
prediction of the sustained winds), and that sites with
smaller than average GFs have local features that
contribute to underprediction. The unresolvable local
exposure issues that made the forecasted winds either
too high or low have less impact when those same winds
are used to anticipate gusts, which are ostensibly less
influenced by those issues.
As a consequence, biased forecasts for the observed

sustained winds can be used to make unbiased estimates
of the observed gusts. This is demonstrated in Figs. 12d
and 9c, which now plot forecasted versus observed gusts.
The gust predictions were made by multiplying the
sustained wind prediction for each site by a single,
constant GF of 1.7, as suggested by Fig. 12c. There are
still errors that could possibly be decreased via revisions
to terrain and/or land-use characteristics, but again at
this point the benefits are likely too small to justify
the effort.

b. Network-averaged wind and gust predictions

Next, we pursue a very similar strategy to make
predictions of network-averaged gusts from network-
averaged sustained wind forecasts. Each point in
Fig. 13a now represents one of the 324 observa-
tion times from the six Santa Ana wind events. Re-
markably, after averaging over the 135-station
network, the relationship between the observed winds
and gusts has virtually no dispersion, with an R2 of
0.99 and a slope of 1.7. Each station has its own GF at
each point in time, which can vary for a variety of
reasons (see below), but it remains that when these
324 network-averaged wind and gust pairs are plotted,
there is no scatter.
This curious finding is not just a characteristic of

Santa Ana wind events, as illustrated in Fig. 13b, which
shows network-averaged winds versus gusts every
10min over 12 consecutive months. Again, each of the
51 940 points on the plot represents a wind and a gust
averaged over 135 stations at a single instant in time.
Obviously, this 1-yr period contains a wide variety of
weather conditions and surface wind directions, and
yet the slope (1.7) and the R2 (0.99) have remained
unchanged. At each station, the GF may shift with the
magnitude of the sustained wind, type of weather, and
time of day and year, but when these data are com-
bined into network averages, the variation is found
to vanish.
Why this result has been obtained is not entirely

understood. [This finding was first reported in Fovell
and Cao (2014), and Cao and Fovell (2015) and
Gallagher (2016) have demonstrated that this very low
scatter also occurs in other homogeneous observa-
tional networks, such as the Dugway Proving Ground
Mesonet in Utah, the NOAA/Air Resources Labora-
tory Field Research Division Mesonet in Idaho, and
the Delaware Environmental Observing System Mes-
onet.] It is noted that, unlike some other networks or
combinations of networks, the SDG&E mesonet is
nearly homogeneous with respect to instrumentation,
age of facilities, anemometer mounting height, and
station-siting philosophy. At a single station, the GF
can vary substantially with the sustained wind (e.g.,
FC17, their Fig. 3), but even at one site the variability
can be considerably reduced when the wind–gust pairs
are considered in bulk (not shown). The dispersion, as
measured by the R2 statistic, was already low, and this
is true at all sites in the mesonet. The network average
is then obtained by integrating over this collection of
station datasets, each with relatively low dispersion.
Perhaps this is simply a manifestation of ‘‘central ten-
dency,’’ given that the network is nearly static, with neither
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than several minutes. Because of this, it is most sensible
to compare model outputs to observed sustained winds
and construct a reasonable gust parameterization. In this
section, we pursue a simple gust model for individual
stations and the SDG&E mesonet as a whole.

a. Station wind and gust predictions

Figure 12a presents the relationship between ob-
served sustained winds and gusts for the six-event
composite dataset, each point representing an SDG&E
station’s values after averaging over the 324 hourly ob-
servations. The no-intercept least squares fit to the
entire dataset yields a slope (or GF) of 1.7 with an R2 of
0.89. This suggests that adequate forecasts of sustained
winds could result in skillful predictions of observed
gusts in a simple manner via a constant gust factor, that
being 1.7 in the present example. The relationship
between the composite-averaged forecasted versus ob-
served sustained winds is nearly 1:1 (Fig. 12b), despite
the previously discussed tendency to overforecast sites
with slower winds and underforecast those with stronger
average values. The systematic bias has mainly served to
increase the scatter (R2 5 0.62).
Using the average forecasted winds to predict the

observed gusts instead (Fig. 12c) also results in a slope of
very nearly 1.7, but with an even larger R2 (0.75) than
that associated with the relationship between forecasted
and observed winds. The noticeable decrease in scatter
occurred precisely because some of the systematic biases
in the sustained wind forecasts have been mitigated via
the tacit presumption of a uniform gust factor. Recall
that we have hypothesized that GFs higher than the
all-station average (1.7) indicate locations that are
relatively more sheltered (resulting in model over-
prediction of the sustained winds), and that sites with
smaller than average GFs have local features that
contribute to underprediction. The unresolvable local
exposure issues that made the forecasted winds either
too high or low have less impact when those same winds
are used to anticipate gusts, which are ostensibly less
influenced by those issues.
As a consequence, biased forecasts for the observed

sustained winds can be used to make unbiased estimates
of the observed gusts. This is demonstrated in Figs. 12d
and 9c, which now plot forecasted versus observed gusts.
The gust predictions were made by multiplying the
sustained wind prediction for each site by a single,
constant GF of 1.7, as suggested by Fig. 12c. There are
still errors that could possibly be decreased via revisions
to terrain and/or land-use characteristics, but again at
this point the benefits are likely too small to justify
the effort.

b. Network-averaged wind and gust predictions

Next, we pursue a very similar strategy to make
predictions of network-averaged gusts from network-
averaged sustained wind forecasts. Each point in
Fig. 13a now represents one of the 324 observa-
tion times from the six Santa Ana wind events. Re-
markably, after averaging over the 135-station
network, the relationship between the observed winds
and gusts has virtually no dispersion, with an R2 of
0.99 and a slope of 1.7. Each station has its own GF at
each point in time, which can vary for a variety of
reasons (see below), but it remains that when these
324 network-averaged wind and gust pairs are plotted,
there is no scatter.
This curious finding is not just a characteristic of

Santa Ana wind events, as illustrated in Fig. 13b, which
shows network-averaged winds versus gusts every
10min over 12 consecutive months. Again, each of the
51 940 points on the plot represents a wind and a gust
averaged over 135 stations at a single instant in time.
Obviously, this 1-yr period contains a wide variety of
weather conditions and surface wind directions, and
yet the slope (1.7) and the R2 (0.99) have remained
unchanged. At each station, the GF may shift with the
magnitude of the sustained wind, type of weather, and
time of day and year, but when these data are com-
bined into network averages, the variation is found
to vanish.
Why this result has been obtained is not entirely

understood. [This finding was first reported in Fovell
and Cao (2014), and Cao and Fovell (2015) and
Gallagher (2016) have demonstrated that this very low
scatter also occurs in other homogeneous observa-
tional networks, such as the Dugway Proving Ground
Mesonet in Utah, the NOAA/Air Resources Labora-
tory Field Research Division Mesonet in Idaho, and
the Delaware Environmental Observing System Mes-
onet.] It is noted that, unlike some other networks or
combinations of networks, the SDG&E mesonet is
nearly homogeneous with respect to instrumentation,
age of facilities, anemometer mounting height, and
station-siting philosophy. At a single station, the GF
can vary substantially with the sustained wind (e.g.,
FC17, their Fig. 3), but even at one site the variability
can be considerably reduced when the wind–gust pairs
are considered in bulk (not shown). The dispersion, as
measured by the R2 statistic, was already low, and this
is true at all sites in the mesonet. The network average
is then obtained by integrating over this collection of
station datasets, each with relatively low dispersion.
Perhaps this is simply a manifestation of ‘‘central ten-
dency,’’ given that the network is nearly static, with neither
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hardware nor station location changes over the period
under examination.
In any case, the no-intercept least squares fit between

the network-averaged observed and forecasted winds
over the six Santa Ana events yielded a slope of 0.99,
with a skillful R2 of 0.80 (Fig. 13c). The PX–ACM2
configuration was already shown to consistently produce
unbiased forecasts when averaged over the mesonet,
which naturally averages out the previously discussed
systematic biases. Applying a constant gust factor of 1.7

to these forecasted sustained winds to get predicted
gusts yielded a scatterplot (Fig. 13d) that is visually
comparable to Fig. 13c with respect to dispersion,
possessing a slope of 1.0 and the R2 being 0.82. Impor-
tantly, note that the network-averaged gust forecasts are
unbiased.
Finally, we apply this constant GF concept to make

predictions of network-averaged gusts for individual
SantaAnawind events. Figure 14 presents time series of the
observed (dotted lines) and forecasted (solid lines) winds

FIG. 12. Scatterplots of six-event-mean (a) observed event-averaged sustained wind vs observed event-averaged
gust, (b) observed event-averaged sustained wind vs forecasted event-averaged sustained wind, (c) forecasted
event-averaged sustained wind vs observed event-averaged gust, and (d) observed event-averaged gust vs fore-
casted event-averaged gust using a gust factor of 1.7 for the 135 SDG&E stations. Each dot represents a station. A
zero-intercept least squares fit (red line) and the 1:1 line (dashed gray) are shown in each panel for reference, with
slopes and R2 values indicated. (All units are m s21.)
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than several minutes. Because of this, it is most sensible
to compare model outputs to observed sustained winds
and construct a reasonable gust parameterization. In this
section, we pursue a simple gust model for individual
stations and the SDG&E mesonet as a whole.

a. Station wind and gust predictions

Figure 12a presents the relationship between ob-
served sustained winds and gusts for the six-event
composite dataset, each point representing an SDG&E
station’s values after averaging over the 324 hourly ob-
servations. The no-intercept least squares fit to the
entire dataset yields a slope (or GF) of 1.7 with an R2 of
0.89. This suggests that adequate forecasts of sustained
winds could result in skillful predictions of observed
gusts in a simple manner via a constant gust factor, that
being 1.7 in the present example. The relationship
between the composite-averaged forecasted versus ob-
served sustained winds is nearly 1:1 (Fig. 12b), despite
the previously discussed tendency to overforecast sites
with slower winds and underforecast those with stronger
average values. The systematic bias has mainly served to
increase the scatter (R2 5 0.62).
Using the average forecasted winds to predict the

observed gusts instead (Fig. 12c) also results in a slope of
very nearly 1.7, but with an even larger R2 (0.75) than
that associated with the relationship between forecasted
and observed winds. The noticeable decrease in scatter
occurred precisely because some of the systematic biases
in the sustained wind forecasts have been mitigated via
the tacit presumption of a uniform gust factor. Recall
that we have hypothesized that GFs higher than the
all-station average (1.7) indicate locations that are
relatively more sheltered (resulting in model over-
prediction of the sustained winds), and that sites with
smaller than average GFs have local features that
contribute to underprediction. The unresolvable local
exposure issues that made the forecasted winds either
too high or low have less impact when those same winds
are used to anticipate gusts, which are ostensibly less
influenced by those issues.
As a consequence, biased forecasts for the observed

sustained winds can be used to make unbiased estimates
of the observed gusts. This is demonstrated in Figs. 12d
and 9c, which now plot forecasted versus observed gusts.
The gust predictions were made by multiplying the
sustained wind prediction for each site by a single,
constant GF of 1.7, as suggested by Fig. 12c. There are
still errors that could possibly be decreased via revisions
to terrain and/or land-use characteristics, but again at
this point the benefits are likely too small to justify
the effort.

b. Network-averaged wind and gust predictions

Next, we pursue a very similar strategy to make
predictions of network-averaged gusts from network-
averaged sustained wind forecasts. Each point in
Fig. 13a now represents one of the 324 observa-
tion times from the six Santa Ana wind events. Re-
markably, after averaging over the 135-station
network, the relationship between the observed winds
and gusts has virtually no dispersion, with an R2 of
0.99 and a slope of 1.7. Each station has its own GF at
each point in time, which can vary for a variety of
reasons (see below), but it remains that when these
324 network-averaged wind and gust pairs are plotted,
there is no scatter.
This curious finding is not just a characteristic of

Santa Ana wind events, as illustrated in Fig. 13b, which
shows network-averaged winds versus gusts every
10min over 12 consecutive months. Again, each of the
51 940 points on the plot represents a wind and a gust
averaged over 135 stations at a single instant in time.
Obviously, this 1-yr period contains a wide variety of
weather conditions and surface wind directions, and
yet the slope (1.7) and the R2 (0.99) have remained
unchanged. At each station, the GF may shift with the
magnitude of the sustained wind, type of weather, and
time of day and year, but when these data are com-
bined into network averages, the variation is found
to vanish.
Why this result has been obtained is not entirely

understood. [This finding was first reported in Fovell
and Cao (2014), and Cao and Fovell (2015) and
Gallagher (2016) have demonstrated that this very low
scatter also occurs in other homogeneous observa-
tional networks, such as the Dugway Proving Ground
Mesonet in Utah, the NOAA/Air Resources Labora-
tory Field Research Division Mesonet in Idaho, and
the Delaware Environmental Observing System Mes-
onet.] It is noted that, unlike some other networks or
combinations of networks, the SDG&E mesonet is
nearly homogeneous with respect to instrumentation,
age of facilities, anemometer mounting height, and
station-siting philosophy. At a single station, the GF
can vary substantially with the sustained wind (e.g.,
FC17, their Fig. 3), but even at one site the variability
can be considerably reduced when the wind–gust pairs
are considered in bulk (not shown). The dispersion, as
measured by the R2 statistic, was already low, and this
is true at all sites in the mesonet. The network average
is then obtained by integrating over this collection of
station datasets, each with relatively low dispersion.
Perhaps this is simply a manifestation of ‘‘central ten-
dency,’’ given that the network is nearly static, with neither
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(black) and gusts (red) over the SDG&E mesonet for the
six Santa Ana episodes. Generally, the gust parameteriza-
tion captures the amplitude and temporal evolution of the
gusts for all six of the events quite well, especially the peaks.
Obviously, performance depends upon the sustained wind
predictions being correct in the first place. Gust over-
predictions such as the first peak of the April 2014 event
(Fig. 14a) and underpredictions such as the October 2013
(Fig. 14e), the February 2013 (Fig. 14f), and the January
2015 (Fig. 14d) events are consistent with the corresponding
sustained wind biases. However, all can be considered to
be rather skillful gust forecasts, especially for the May

2014 (Fig. 14b) and the February 2015 (Fig. 14c) episodes.
Averaged over the six events, the SDG&E network
forecasted gust bias is merely 20.2ms21, which is com-
parable to the averaged forecasted sustained wind bias
(;0.0ms21).

6. Discussion and summary

We seek to obtain skillful gust forecasts in San
Diego County during Santa Ana wind events. These
episodes are relatively frequent during the winter
half-year (Raphael 2003; Jones et al. 2010) and the dry

FIG. 13. Scatterplots of network-averaged (a) observedwind vs observed gust over the six events (324 observation
times), (b) observed wind vs observed gust for 1 yr (51 940 observation times), (c) observed wind vs forecasted wind
over the six events, and (d) observed gust vs forecasted gust over the six events. Each dot is a network average based
on 135 SDG&E stations. A zero-intercept least squares fit (red line) and the 1:1 line (dashed gray) are shown in each
panel for reference, with slopes and R2 values indicated. (All units are m s21.)
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hardware nor station location changes over the period
under examination.
In any case, the no-intercept least squares fit between

the network-averaged observed and forecasted winds
over the six Santa Ana events yielded a slope of 0.99,
with a skillful R2 of 0.80 (Fig. 13c). The PX–ACM2
configuration was already shown to consistently produce
unbiased forecasts when averaged over the mesonet,
which naturally averages out the previously discussed
systematic biases. Applying a constant gust factor of 1.7

to these forecasted sustained winds to get predicted
gusts yielded a scatterplot (Fig. 13d) that is visually
comparable to Fig. 13c with respect to dispersion,
possessing a slope of 1.0 and the R2 being 0.82. Impor-
tantly, note that the network-averaged gust forecasts are
unbiased.
Finally, we apply this constant GF concept to make

predictions of network-averaged gusts for individual
SantaAnawind events. Figure 14 presents time series of the
observed (dotted lines) and forecasted (solid lines) winds

FIG. 12. Scatterplots of six-event-mean (a) observed event-averaged sustained wind vs observed event-averaged
gust, (b) observed event-averaged sustained wind vs forecasted event-averaged sustained wind, (c) forecasted
event-averaged sustained wind vs observed event-averaged gust, and (d) observed event-averaged gust vs fore-
casted event-averaged gust using a gust factor of 1.7 for the 135 SDG&E stations. Each dot represents a station. A
zero-intercept least squares fit (red line) and the 1:1 line (dashed gray) are shown in each panel for reference, with
slopes and R2 values indicated. (All units are m s21.)
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(black) and gusts (red) over the SDG&E mesonet for the
six Santa Ana episodes. Generally, the gust parameteriza-
tion captures the amplitude and temporal evolution of the
gusts for all six of the events quite well, especially the peaks.
Obviously, performance depends upon the sustained wind
predictions being correct in the first place. Gust over-
predictions such as the first peak of the April 2014 event
(Fig. 14a) and underpredictions such as the October 2013
(Fig. 14e), the February 2013 (Fig. 14f), and the January
2015 (Fig. 14d) events are consistent with the corresponding
sustained wind biases. However, all can be considered to
be rather skillful gust forecasts, especially for the May

2014 (Fig. 14b) and the February 2015 (Fig. 14c) episodes.
Averaged over the six events, the SDG&E network
forecasted gust bias is merely 20.2ms21, which is com-
parable to the averaged forecasted sustained wind bias
(;0.0ms21).

6. Discussion and summary

We seek to obtain skillful gust forecasts in San
Diego County during Santa Ana wind events. These
episodes are relatively frequent during the winter
half-year (Raphael 2003; Jones et al. 2010) and the dry

FIG. 13. Scatterplots of network-averaged (a) observedwind vs observed gust over the six events (324 observation
times), (b) observed wind vs observed gust for 1 yr (51 940 observation times), (c) observed wind vs forecasted wind
over the six events, and (d) observed gust vs forecasted gust over the six events. Each dot is a network average based
on 135 SDG&E stations. A zero-intercept least squares fit (red line) and the 1:1 line (dashed gray) are shown in each
panel for reference, with slopes and R2 values indicated. (All units are m s21.)
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(sometimes hot) winds contribute greatly to the fire
hazard (Rolinski et al. 2016). As models of the present
type cannot resolve gusts, this effort must start with
making sure sustained wind predictions are as accurate
as possible and then deducing gusts via an algorithm or
parameterization of some kind. We attempted to parti-
tion the forecast sustained wind bias into ‘‘fixable’’ and
‘‘unavoidable’’ components. The fixable part may be
addressed via the model configuration, including re-
finements of physical parameterizations, among many
other things, leaving the unavoidable portion to be
mitigated via postprocessing.
Utilizing hundreds of WRF simulations made for

CF16, FC17, and herein, and the high-density SDG&E
surface mesonet, we have demonstrated that the wind
speeds and flow patterns during moderately strong to
strong Santa Ana episodes are sensitive to horizontal

resolution, stochastic perturbations (cf. Berner et al.
2011), and model physics selections, especially the land
surface models (LSMs) that determine surface rough-
ness. The Pleim–Xiu LSM scheme emerged as the best
overall with respect to sustained wind forecast skill,
having a nearly zero bias when averaged over the net-
work and multiple events, largely because of its unique
treatment of surface roughness in the shrubland cate-
gories that dominate the west-facing slopes in the
SDG&E network. In particular, PX uses substantially
larger z0 values for those categories and holds themfixed
throughout the year, while most WRF simulations re-
sulted in positive wind biases as they treated the surface
as being too smooth. Altering other LSMs such as Noah
to mimic the PX roughness lengths improved their
MAE and bias scores, confirming this is the dominant
factor. This is important, because other land surface

FIG. 14. Time series of network-averaged observed (black dots) and predicted (red curves) 6.1-m sustained winds (black; m s21) and
gusts (red; m s21) for the (a)April 2014, (b)May 2014, (c) February 2015, (d) January 2015, (e) October 2013, and (f) February 2013 events
(see Table 1). The GF used to forecast gusts is 1.7, based on the network-averaged wind vs the network-averaged gust.
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(black) and gusts (red) over the SDG&E mesonet for the
six Santa Ana episodes. Generally, the gust parameteriza-
tion captures the amplitude and temporal evolution of the
gusts for all six of the events quite well, especially the peaks.
Obviously, performance depends upon the sustained wind
predictions being correct in the first place. Gust over-
predictions such as the first peak of the April 2014 event
(Fig. 14a) and underpredictions such as the October 2013
(Fig. 14e), the February 2013 (Fig. 14f), and the January
2015 (Fig. 14d) events are consistent with the corresponding
sustained wind biases. However, all can be considered to
be rather skillful gust forecasts, especially for the May

2014 (Fig. 14b) and the February 2015 (Fig. 14c) episodes.
Averaged over the six events, the SDG&E network
forecasted gust bias is merely 20.2ms21, which is com-
parable to the averaged forecasted sustained wind bias
(;0.0ms21).

6. Discussion and summary

We seek to obtain skillful gust forecasts in San
Diego County during Santa Ana wind events. These
episodes are relatively frequent during the winter
half-year (Raphael 2003; Jones et al. 2010) and the dry

FIG. 13. Scatterplots of network-averaged (a) observedwind vs observed gust over the six events (324 observation
times), (b) observed wind vs observed gust for 1 yr (51 940 observation times), (c) observed wind vs forecasted wind
over the six events, and (d) observed gust vs forecasted gust over the six events. Each dot is a network average based
on 135 SDG&E stations. A zero-intercept least squares fit (red line) and the 1:1 line (dashed gray) are shown in each
panel for reference, with slopes and R2 values indicated. (All units are m s21.)
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treatments could provide superior temperature and
humidity reconstructions (cf. Cao 2015), which are cru-
cial within the context of Southern California fire
weather predictions (e.g., Rolinski et al. 2016).
It is intuitive that increasing the surface roughness

would slow down the winds, at least overall. It may also
change the nature of the downslope flow, in ways that
could be detectable even with limited (i.e., surface only)
observational data, thanks to the relatively dense
SDG&E mesonet. The hydraulic jump that occurred
during the first phase of the February 2013 episode is one
such example. The jumpwas consistently present only in
simulations having relatively rougher surfaces, although
it could occasionally emerge in configurations with
lower z0 values via stochastic forcing. The downslope
extent of strong surface winds is another, related ex-
ample. This was larger with LSMs specifying lower
roughness lengths and in these cases contributed to the
positive network-averaged wind biases.
Even a model configuration that yielded negligible

bias when averaged over multiple events and stations
was still found to possess systematic errors at individual
sites. These errors were shown to be inversely correlated
with the average observed wind: the model tended to
overpredict locales with weaker winds while under-
predicting speeds where measured winds were stronger.
Forecast sustained wind speed bias was also seen to be
correlated with, and proportional to, the observed gust
factor (GF), the ratio of the observed sustained wind
and gust. This is mainly true since the GF and sustained
wind are (negatively) correlated: sites with larger GFs
tend to have slower winds.
We interpreted the difference between a given sta-

tion’s GF and the network average (1.7 for the SDG&E
mesonet as a whole, with virtually no scatter or weather
dependence) as ameasure of very localized anemometer
exposure that cannot be captured even at reasonably
high spatial resolution and, thus, an unavoidable com-
ponent of the bias. Sites with obstacles or landforms that
tend to slow the temporally averaged sustained wind
more than the transient, impulsive gusts would result in
GFs that are larger than the network average, and its
winds would be more likely to be overpredicted. In
contrast, stations having local features that help enhance
the winds relative to the gusts would have lowerGFs and
be underpredicted. In practice, both were found to be
the case, as after using the observed GF to predict sus-
tained wind forecast bias, the remainder of the bias was
independent of observed wind speeds.
The gust algorithm that emerged from this study is

extremely simple: we multiply sustained wind forecasts
at each site by the network average GF of 1.7. Gust
factors vary in space and time, but gust forecasts made

this way had more skill than the sustained wind pre-
dictions. This was because using a constant value partially
mitigated the unavoidable local exposure bias discussed
above. Applying a constant value of 1.7 to the network-
averagedwind forecasts also proved to be beneficial, which
we demonstrated for the six Santa Ana events under ex-
amination. Averaging the sustained wind predictions over
the network already filtered out the exposure bias.
Certainly, a more sophisticated treatment of predicting

gusts could be designed, but we are encouraged that an
attractively simple gust parameterization could actually
improve upon already skillful sustained wind forecasts in
this region. That being said, we emphasize that the spe-
cific 1.7 factor is a consequence of SDG&E mesonet de-
sign factors including (and not limited to) mounting
height and averaging intervals, and the optimal multiplier
will certainly be different for networks with other char-
acteristics. We also caution that our study area experi-
ences little in the way of convective weather, and so a gust
parameterization this simple may not work well in areas
where thunderstorms are common.
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treatments could provide superior temperature and
humidity reconstructions (cf. Cao 2015), which are cru-
cial within the context of Southern California fire
weather predictions (e.g., Rolinski et al. 2016).
It is intuitive that increasing the surface roughness

would slow down the winds, at least overall. It may also
change the nature of the downslope flow, in ways that
could be detectable even with limited (i.e., surface only)
observational data, thanks to the relatively dense
SDG&E mesonet. The hydraulic jump that occurred
during the first phase of the February 2013 episode is one
such example. The jumpwas consistently present only in
simulations having relatively rougher surfaces, although
it could occasionally emerge in configurations with
lower z0 values via stochastic forcing. The downslope
extent of strong surface winds is another, related ex-
ample. This was larger with LSMs specifying lower
roughness lengths and in these cases contributed to the
positive network-averaged wind biases.
Even a model configuration that yielded negligible

bias when averaged over multiple events and stations
was still found to possess systematic errors at individual
sites. These errors were shown to be inversely correlated
with the average observed wind: the model tended to
overpredict locales with weaker winds while under-
predicting speeds where measured winds were stronger.
Forecast sustained wind speed bias was also seen to be
correlated with, and proportional to, the observed gust
factor (GF), the ratio of the observed sustained wind
and gust. This is mainly true since the GF and sustained
wind are (negatively) correlated: sites with larger GFs
tend to have slower winds.
We interpreted the difference between a given sta-

tion’s GF and the network average (1.7 for the SDG&E
mesonet as a whole, with virtually no scatter or weather
dependence) as ameasure of very localized anemometer
exposure that cannot be captured even at reasonably
high spatial resolution and, thus, an unavoidable com-
ponent of the bias. Sites with obstacles or landforms that
tend to slow the temporally averaged sustained wind
more than the transient, impulsive gusts would result in
GFs that are larger than the network average, and its
winds would be more likely to be overpredicted. In
contrast, stations having local features that help enhance
the winds relative to the gusts would have lowerGFs and
be underpredicted. In practice, both were found to be
the case, as after using the observed GF to predict sus-
tained wind forecast bias, the remainder of the bias was
independent of observed wind speeds.
The gust algorithm that emerged from this study is

extremely simple: we multiply sustained wind forecasts
at each site by the network average GF of 1.7. Gust
factors vary in space and time, but gust forecasts made

this way had more skill than the sustained wind pre-
dictions. This was because using a constant value partially
mitigated the unavoidable local exposure bias discussed
above. Applying a constant value of 1.7 to the network-
averagedwind forecasts also proved to be beneficial, which
we demonstrated for the six Santa Ana events under ex-
amination. Averaging the sustained wind predictions over
the network already filtered out the exposure bias.
Certainly, a more sophisticated treatment of predicting

gusts could be designed, but we are encouraged that an
attractively simple gust parameterization could actually
improve upon already skillful sustained wind forecasts in
this region. That being said, we emphasize that the spe-
cific 1.7 factor is a consequence of SDG&E mesonet de-
sign factors including (and not limited to) mounting
height and averaging intervals, and the optimal multiplier
will certainly be different for networks with other char-
acteristics. We also caution that our study area experi-
ences little in the way of convective weather, and so a gust
parameterization this simple may not work well in areas
where thunderstorms are common.
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treatments could provide superior temperature and
humidity reconstructions (cf. Cao 2015), which are cru-
cial within the context of Southern California fire
weather predictions (e.g., Rolinski et al. 2016).
It is intuitive that increasing the surface roughness

would slow down the winds, at least overall. It may also
change the nature of the downslope flow, in ways that
could be detectable even with limited (i.e., surface only)
observational data, thanks to the relatively dense
SDG&E mesonet. The hydraulic jump that occurred
during the first phase of the February 2013 episode is one
such example. The jumpwas consistently present only in
simulations having relatively rougher surfaces, although
it could occasionally emerge in configurations with
lower z0 values via stochastic forcing. The downslope
extent of strong surface winds is another, related ex-
ample. This was larger with LSMs specifying lower
roughness lengths and in these cases contributed to the
positive network-averaged wind biases.
Even a model configuration that yielded negligible

bias when averaged over multiple events and stations
was still found to possess systematic errors at individual
sites. These errors were shown to be inversely correlated
with the average observed wind: the model tended to
overpredict locales with weaker winds while under-
predicting speeds where measured winds were stronger.
Forecast sustained wind speed bias was also seen to be
correlated with, and proportional to, the observed gust
factor (GF), the ratio of the observed sustained wind
and gust. This is mainly true since the GF and sustained
wind are (negatively) correlated: sites with larger GFs
tend to have slower winds.
We interpreted the difference between a given sta-

tion’s GF and the network average (1.7 for the SDG&E
mesonet as a whole, with virtually no scatter or weather
dependence) as ameasure of very localized anemometer
exposure that cannot be captured even at reasonably
high spatial resolution and, thus, an unavoidable com-
ponent of the bias. Sites with obstacles or landforms that
tend to slow the temporally averaged sustained wind
more than the transient, impulsive gusts would result in
GFs that are larger than the network average, and its
winds would be more likely to be overpredicted. In
contrast, stations having local features that help enhance
the winds relative to the gusts would have lowerGFs and
be underpredicted. In practice, both were found to be
the case, as after using the observed GF to predict sus-
tained wind forecast bias, the remainder of the bias was
independent of observed wind speeds.
The gust algorithm that emerged from this study is

extremely simple: we multiply sustained wind forecasts
at each site by the network average GF of 1.7. Gust
factors vary in space and time, but gust forecasts made

this way had more skill than the sustained wind pre-
dictions. This was because using a constant value partially
mitigated the unavoidable local exposure bias discussed
above. Applying a constant value of 1.7 to the network-
averagedwind forecasts also proved to be beneficial, which
we demonstrated for the six Santa Ana events under ex-
amination. Averaging the sustained wind predictions over
the network already filtered out the exposure bias.
Certainly, a more sophisticated treatment of predicting

gusts could be designed, but we are encouraged that an
attractively simple gust parameterization could actually
improve upon already skillful sustained wind forecasts in
this region. That being said, we emphasize that the spe-
cific 1.7 factor is a consequence of SDG&E mesonet de-
sign factors including (and not limited to) mounting
height and averaging intervals, and the optimal multiplier
will certainly be different for networks with other char-
acteristics. We also caution that our study area experi-
ences little in the way of convective weather, and so a gust
parameterization this simple may not work well in areas
where thunderstorms are common.
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(sometimes hot) winds contribute greatly to the fire
hazard (Rolinski et al. 2016). As models of the present
type cannot resolve gusts, this effort must start with
making sure sustained wind predictions are as accurate
as possible and then deducing gusts via an algorithm or
parameterization of some kind. We attempted to parti-
tion the forecast sustained wind bias into ‘‘fixable’’ and
‘‘unavoidable’’ components. The fixable part may be
addressed via the model configuration, including re-
finements of physical parameterizations, among many
other things, leaving the unavoidable portion to be
mitigated via postprocessing.
Utilizing hundreds of WRF simulations made for

CF16, FC17, and herein, and the high-density SDG&E
surface mesonet, we have demonstrated that the wind
speeds and flow patterns during moderately strong to
strong Santa Ana episodes are sensitive to horizontal

resolution, stochastic perturbations (cf. Berner et al.
2011), and model physics selections, especially the land
surface models (LSMs) that determine surface rough-
ness. The Pleim–Xiu LSM scheme emerged as the best
overall with respect to sustained wind forecast skill,
having a nearly zero bias when averaged over the net-
work and multiple events, largely because of its unique
treatment of surface roughness in the shrubland cate-
gories that dominate the west-facing slopes in the
SDG&E network. In particular, PX uses substantially
larger z0 values for those categories and holds themfixed
throughout the year, while most WRF simulations re-
sulted in positive wind biases as they treated the surface
as being too smooth. Altering other LSMs such as Noah
to mimic the PX roughness lengths improved their
MAE and bias scores, confirming this is the dominant
factor. This is important, because other land surface

FIG. 14. Time series of network-averaged observed (black dots) and predicted (red curves) 6.1-m sustained winds (black; m s21) and
gusts (red; m s21) for the (a)April 2014, (b)May 2014, (c) February 2015, (d) January 2015, (e) October 2013, and (f) February 2013 events
(see Table 1). The GF used to forecast gusts is 1.7, based on the network-averaged wind vs the network-averaged gust.
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(black) and gusts (red) over the SDG&E mesonet for the
six Santa Ana episodes. Generally, the gust parameteriza-
tion captures the amplitude and temporal evolution of the
gusts for all six of the events quite well, especially the peaks.
Obviously, performance depends upon the sustained wind
predictions being correct in the first place. Gust over-
predictions such as the first peak of the April 2014 event
(Fig. 14a) and underpredictions such as the October 2013
(Fig. 14e), the February 2013 (Fig. 14f), and the January
2015 (Fig. 14d) events are consistent with the corresponding
sustained wind biases. However, all can be considered to
be rather skillful gust forecasts, especially for the May

2014 (Fig. 14b) and the February 2015 (Fig. 14c) episodes.
Averaged over the six events, the SDG&E network
forecasted gust bias is merely 20.2ms21, which is com-
parable to the averaged forecasted sustained wind bias
(;0.0ms21).

6. Discussion and summary

We seek to obtain skillful gust forecasts in San
Diego County during Santa Ana wind events. These
episodes are relatively frequent during the winter
half-year (Raphael 2003; Jones et al. 2010) and the dry

FIG. 13. Scatterplots of network-averaged (a) observedwind vs observed gust over the six events (324 observation
times), (b) observed wind vs observed gust for 1 yr (51 940 observation times), (c) observed wind vs forecasted wind
over the six events, and (d) observed gust vs forecasted gust over the six events. Each dot is a network average based
on 135 SDG&E stations. A zero-intercept least squares fit (red line) and the 1:1 line (dashed gray) are shown in each
panel for reference, with slopes and R2 values indicated. (All units are m s21.)
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• The goals are clearly stated.


• The methods are clearly described.


• The results are well-presented graphically.


• The conclusions are well-supported by their results.


• The study is a valuable contribution to mesoscale forecasting of Santa 
Ana wind speeds and gusts.


• The study nicely demonstrates how model physics (LSMs in this case) 
can be evaluated using observations.


• The study is also an example of using observations (from a dense 
mesonet in this case) to extend what a mesoscale model can skillfully 
predict (wind speeds), by relating gusts (not resolvable by model) to 
model-predicted wind speeds.
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