
Guide 138
Version 3.2

An introduction to
programming in Fortran 90
This guide provides an introduction to computer programming in the Fortran
90 programming language. The elements of programming are introduced in
the context of Fortran 90 and a series of examples and exercises is used to
illustrate their use. The aim of the course is to provide sufficient knowledge of
programming and Fortran 90 to write straightforward programs.
The course is designed for those with little or no previous programming
experience, but you will need to be able to work in linux or Unix and use a
linux or Unix text editor.

Document code: Guide 138
Title: An Introduction to programming in Fortran 90
Version: 3.2
Date: October 2007
Produced by: University of Durham Information Technology Service

This document was based on a Fortran 77 course written in
the Department of Physics, University of Durham.

Copyright © 2007 University of Durham Information Technology Service

Conventions:
In this document, the following conventions are used:
• A bold typewriter font is used to represent the actual characters you type at the

keyboard.
• A slanted typewriter font is used for items such as filenames which you should

replace with particular instances.
• A typewriter font is used for what you see on the screen.
• A bold font is used to indicate named keys on the keyboard, for example, Esc

and Enter, represent the keys marked Esc and Enter, respectively.
• Where two keys are separated by a forward slash (as in Ctrl/B, for example),

press and hold down the first key (Ctrl), tap the second (B), and then release the
first key.

• A bold font is also used where a technical term or command name is used in the
text.

Contents

1. Introduction..1

2. Programming basics...2
2.1 The main parts of a Fortran 90 program ..2
2.2 The layout of Fortran 90 statements ..3

3. Data types ..3
3.1 Constants...4

3.1.1 Integers...4
3.1.2 Reals...5
3.1.3 Double Precision...5
3.1.4 Character ..5
3.1.5 Logical ..5
3.1.6 Complex..6

3.2 Variables ..6
4. How to write, process and run a program...7

4.1 Writing the program ...7
4.2 Compilation and linking..8
4.3 Running the program ...9
4.4 Removing old files..9

5. Converting between types of variable...11

6. The hierarchy of operations in Fortran ...12

7. About input and output...14
7.1 Redirection of input/output ...14
7.2 Formatting input and output ...16
7.3 E format and D format..19

8. More intrinsic functions..19

9. Arrays ...21
9.1 Whole array elemental operations ...21
9.2 Whole array operations..22
9.3 Working with subsections of arrays ...23

9.3.1 Selecting individual array elements ..23
9.3.2 Selecting array sections..24
9.3.3 Using masks ...24

9.4 Allocatable arrays ..26
10. Parameters and initial values...27

11. Program control: DO loops and IF statements...28
11.1 DO... END DO loops ..28
11.2 IF statements ...30

11.2.1 More about the where statement ..33
11.3 CASE statements...34
11.4 Controlling DO loops with logical expressions ...34

11.4.1 Conditional exit loops..34
11.4.2 Conditional cycle loops ...34
11.4.3 DO WHILE loops ..35

11.5 Named DO loops and IF statements..36

Guide 138: An Introduction to programming in Fortran 90 i

11.6 Implied DO loops ... 36
12. Hints on debugging programs ... 37

13. Subprograms ... 39
13.1 Functions ... 39
13.2 Subroutines.. 42

13.2.1 Generating random numbers.. 45
13.3 Storing subprograms in separate files ... 46
13.4 Using subroutine libraries .. 47

13.4.1 The NAG library .. 47
13.4.2 Other external libraries ... 49
13.4.3 The 'Numerical Recipes' book .. 49

14. Modules.. 50
14.1 Sharing variables and constants.. 51
14.2 Module subprograms ... 52

15. About Fortran 77 ... 53
15.1 Fixed form syntax .. 54
15.2 Specific intrinsic functions.. 55
15.3 Common blocks ... 55
15.4 'Include' files .. 56
15.5 Standard F77 DO loops ... 56

16. Further information ... 56

Guide 138: An Introduction to programming in Fortran 90 ii

An introduction to Fortran 90: course outline

1. Introduction
Fortran is one of many programming languages available. The name
Fortran is short for FORmula TRANslation and this guide is based on
Fortran 90, which is a version agreed in 1990. Fortran 95, a later standard,
was a minor revision of Fortran 90. The latest standard, Fortran 2003, is in
its final draft stages.

Fortran was developed for general scientific computing and is a very
popular language for this purpose. In 1996 it was estimated that Fortran
was employed for more than 90% of scientific computation (see Scientific
Computing World, April 1996). Fortran is not, however, particularly suitable
as a non-scientific general-purpose language or for use in equipment
control, commerce, text management etc where more appropriate
alternatives are available.

Fortran 90 is available on the ITS Linux service, the UNIX service and on
the Networked PC service. In this course you will use it on the ITS Linux
service. You will need to be familiar with basic Linux commands (e.g. those
covered in Guide 169: An introduction to Linux) and be able to use a Linux
text editor, such as pico, emacs or vi.

About the course

This course provides an introduction to the Fortran 90 programming
language. It should provide you with enough knowledge to write
straightforward Fortran programs and you should also gain some general
experience which can usefully be applied when using any programming
language. The course is constructed from five parts:

Part 1 Getting started: programming basics

Part 2 Input and output, and using intrinsic functions

Part 3 Arrays: vectors and matrices

Part 4 Program control: do loops and if statements

Part 5 Subprograms: functions and subroutines

If you receive these notes on an ITS course, they will be issued by part.
Please bring the notes for previous parts of the course with you to future
sessions so that you have them for reference.

If, at the end of the course, you wish to know more about Fortran 90, many
books and on-line tutorials have been written on the subject. Some
suggestions are given at the end of Part 5.

Guide 138: An Introduction to programming in Fortran 90 1

http://www.dur.ac.uk/its/info/guides/169Linux.pdf

An introduction to Fortran 90: PART 1

2. Programming basics
This section describes the structure and contents of a Fortran 90 program.
A program is simply a set of instructions that tell a computer to do a
particular task. To create a program that works, and works efficiently, you
will need to do the following before you start writing the program:

1) Make sure that you understand the aims of the program.

2) Decide on the information that the program will need as input and that it
should produce as output.

3) Make sure that you understand how the computations will be done (i.e.
that you understand the algorithms to be used) and the order in which
they should be done.

It is very easy to skip one or more of steps 1 - 3 and start writing a program
without really thinking about how it will work. Unless the program is very
small, this will probably lead to a program that is badly structured and
difficult to follow. Most programs do not work perfectly first time, but they
are more likely to work and will be easier to correct if they are well
structured from the beginning.

So, once you have completed steps 1 - 3,

4) Create a program that will solve the specified problem with the
algorithm(s) and input/output requirements that you have identified.

5) Test the program thoroughly.

2.1 The main parts of a Fortran 90 program
A Fortran 90 program has four main elements, in this order:

Program name
The first line of the program gives the program's name, e.g.

program fred2

The program name allows you to recognise the program by looking at the
version that you have typed into the computer. Later versions of the
program might be called, for example,

program fred3
or

program fred4

In principle the program name is optional, but during this course you should
always give a name to your programs.

Initialisation section: declaration of variables
The initialisation section sets some rules for the program but does not carry
out calculations. In particular, it is used to declare all the variables that will
be used to store numbers, etc, within your program. In Fortran 90 there are

2 Guide 138: An Introduction to programming in Fortran 90

several pre-defined variable types such as integer, real and character,
and it is even possible to define new types. The declaration statements set
the types of your variables and can also be used to set initial values. The
Fortran rules do not insist that you declare variables, but it is good
programming and helps avoid many errors.

Main program body
The main program body contains all the executable Fortran statements that
will carry out the task you wish to perform. Statements are generally
executed in order, from top to bottom. The last statement must be an end
statement. In many cases the efficiency and appearance of the main
program can be aided by:

Subprogram(s)
The structure of a program can be made much clearer if blocks of
instructions that perform particular tasks are moved out of the main
program and into subprograms. Subprograms are also very useful if the
same block of instructions is needed several times.

2.2 The layout of Fortran 90 statements

A Fortran 90 program consists of a series of executable and non-
executable statements. Executable statements are ones that cause the
computer to perform some desired operation, e.g. the addition of two
numbers, whereas non-executable statements provide information which
enables the proper operation of the program, e.g. the definition of variables.

Whether it is part of an executable or non-executable statement, each line
in a Fortran 90 program must conform to certain rules about layout:

• A line can be up to 132 characters long (including spaces).
• Any line can start with leading spaces to improve layout.
• An & at the end of a line indicates that the statement continues on the

next line. If the item to be continued is a character constant or a format
statement (both discussed later in the course), the next line should start
with a second &.

• If a line contains an exclamation mark (!), everything from the
exclamation mark to the end of the line is a comment and will not be
executed. Every comment line must begin with this character.

• Several statements can appear on a line, separated by semi-colons (;).
Note: earlier versions of Fortran used a much more rigid layout. This is still
permitted in Fortran 90 but is no longer necessary. Details of the older
layout style are given in section 15.1. The newer, 'free format' layout is
used throughout this guide.

3. Data types
The data that are handled by a program fall into two main types. Constants
have a fixed value, while variables, in which the program will store its input,
output, constants and intermediate results, may change value during
execution of the program.

Guide 138: An Introduction to programming in Fortran 90 3

3.1 Constants

Any constant must have a type so that the computer knows how to store
and handle it. The range of numbers permitted in each type depends on the
computer: the descriptions given below are common on machines with a
32-bit operating system. The main types of constant are:

Integer Integers are normally stored in 4 bytes (that is, 32 bits, i.e. 32
binary 0s and 1s) of storage space. This allows integers from
-2147483647 (231) to +2147483647 (231 - 1) to be
represented.

Real Floating-point real numbers also have a default storage
allocation of 4 bytes. The sign, mantissa and exponent must
all be held in this space. Depending on the Fortran 90
implementation; real numbers can lie typically between
approximately ��1038. Four-byte floating point numbers have
only about 7 significant digits.

Double
precision

Double precision numbers are similar to real numbers but are
allocated twice as much storage space, 8 bytes, so that they
can hold more digits in the mantissa. They have about 15
significant figures and can lie in the approximate range 10-307 -
10308.

Character Character variables can be used to hold standard text/ASCII
characters with one byte per character and N bytes in total,
where N is an integer. Unless N is defined in the declaration
of the variable, the variable can hold only 1 character.

Logical Logical variables have a value of either .true. or .false. . They
take storage space of 4 bytes.

Complex Two real (4 byte) numbers stored as a pair and treated as the
real and imaginary parts of a complex number.

The following examples show you how to enter constants correctly.

3.1.1 Integers

Any number without a decimal point falling between the prescribed limits is
a valid integer, e.g:

-3478
0
567890
+12345678

The following are not valid integers:

 -1,000 (commas not allowed)
 987. (contains a decimal point)
 987654321098 (too big)

4 Guide 138: An Introduction to programming in Fortran 90

3.1.2 Reals

Real numbers contain a decimal point and lie within the prescribed range
such as:

 0.0123 (can also be written as 1.23E-02)
 0.0 (can also be written as 0.0E0)
 -23456.0 (can also be written as -2.3456E4)
 +987652.0 (can also be written as 9.87652E+05)

Examples of illegal real constants are:

 -10 (no decimal point, integer)
 1,123. (commas not allowed)
 145678E4 (no decimal point in mantissa)
 666888.E8.2 (decimal points not allowed in exponent)

3.1.3 Double Precision

These follow the same basic rules as for real numbers but D must be used
instead of E to indicate the exponent. For example, 1.23D-02 and
0.0123D0 represent the double precision version of 0.0123.

3.1.4 Character

Character constants must be contained within single quotes (apostrophes),
for example:

'This is a 31 character constant'
' '
'45.68'

The following are not valid character constants:

Invalid character constant (no quotes)
'Another one (unpaired quote)

To include an apostrophe within the character constant, two apostrophes
should be used e.g.

'Fortran 90 solved all of Julie''s problems'

The '' pair will be interpreted as a single apostrophe within the character
string.

3.1.5 Logical

The only valid logical constants are .true. and .false. (or .TRUE. and
.FALSE.).

Guide 138: An Introduction to programming in Fortran 90 5

3.1.6 Complex

Complex constants are written as a bracketed pair of valid real numbers
separated by a comma, e.g.:

(1.234,-6.5E-3)

where, in this example, 1.234 is the real part of the complex constant and
-0.0065 is the imaginary component.

3.2 Variables

Variables are where your program will store its input, output, constants and
intermediate results. In standard Fortran 90, variable names may contain
alphabetic and numeric characters and underscores but must begin with an
alphabetic character and be no longer than 31 characters long in total. So
loop3 and MyAnswer are valid variable names but 123x and _abc are not.
In general it is helpful to give variables sensible names that suggest their
purpose.

You should be aware that unlike some other programming languages
Fortran does not distinguish between upper and lower case characters, so
a variable called NUMBER is entirely equivalent to one called number or
NUMber etc. Early versions of Fortran used upper case only, but this is no
longer necessary and you need not follow this convention during the
course.

Like constants, variables have to have a type. Any valid constant value can
be assigned to a Fortran variable, provided that the type of the constant is
compatible with the variable's type.

At the beginning of a program you should declare each variable and its
type. The declaration is simply a statement of the variable's type and some
optional extra details such as an initial value.

If you miss out the declaration of a variable, Fortran 90 will give it a type
according to its name: undeclared variables with names beginning with the
letters I,J,K,L,M,N will be given type integer whereas all others (A to H and
O to Z) will be type real. This 'implicit typing' rule is convenient but also
causes problems, since it means that Fortran will accept any mis-spelled or
undeclared variables instead of warning you. This is discussed further in
section 12. To instruct Fortran to reject any variables that have not been
declared, include the line:

implicit none

before any other declarations. The implicit none statement should be used
in all of the programs in this course.

As well as using implicit none, it is strongly advised that you comply with
the naming conventions of implicit typing when naming variables. This can
be useful if (when!) you need to resolve problems in your programs.

6 Guide 138: An Introduction to programming in Fortran 90

4. How to write, process and run a program
There are four stages to creating a Fortran 90 program:

1) Create and save the program using a text editor. The file you create is
called the source code and should have a name that ends in .f90, e.g.
fred.f90.

2) Compile the code into an intermediate format, called an object file.
Compilation is done by the command pgf90. During compilation your
program is checked for syntax errors and, if none are found, a file is
created with a name ending in .o, e.g. fred.o.

3) Link the file into a final, executable form of your program. If compilation
was successful, the pgf90 command will next link your program with
any libraries that it needs. If linking is successful, the object file will be
removed and an executable file will be created. The default name for
the file will be a.out, but you can also specify a name, e.g. fred.
Whereas the original source code that you typed in should normally be
understandable to any Fortran 90 compiler, the final, executable form of
your program is specific to a particular machine type.

4) Run the program.

4.1 Writing the program

In the following sections of this course, you will create a number of small
programs. To keep the files separate from the rest of your work, you might
want to create a directory now in which to store the files. Then cd to the
new directory and work from there:

cd
mkdir Fortran
cd Fortran

Use a text editor (e.g. pico or emacs) to type in the following program and
save it as a file called mult1.f90.

program mult1
implicit none
integer:: i,j,k
!
! This simple Fortran program multiplies two integers.
! It then displays the integers and their product.
!
i = 5
j = 8
k = i * j
write(*,*)i,j,k
stop
end program mult1

Note the following:

Line 1 The file and program names do not have to be the same.
However, it is sensible to choose meaningful names for both

Guide 138: An Introduction to programming in Fortran 90 7

so that you know which program is in which file and have an
indication of the purpose of the program.

Line 2 The implicit none line tells the compiler not to use the implicit
rules for variable types/names. Its effect is that any
undeclared or mis-spelled variables will cause an error when
the program is compiled.

Line 3 This declaration statement reserves storage space for three
integer variables called i, j and k.

Lines 4-7 Comment statements have been used to document the
program.

Lines 8-9 The assignment statement i = 5 places the value 5 into the
variable i and similarly the statement j = 8 gives j the value 8.

Line 10 The assignment statement k = i * j multiplies the values of
variables i and j on the right and assigns the result to the
variable k on the left. Notice that the result variable must be
on the left.

Line 11 A write statement is used to display the contents of the three
variables i, j and k. Note that commas must be used to
separate the items in the list of variables. The (*,*) part
contains information about the destination for the output and
the format of the output. The * symbols mean that we accept
the defaults: the default destination is the screen and we will
accept the default format.

Line 12 When a running program arrives at the stop statement,
execution is terminated and the word STOP is displayed on
the screen. The STOP statement is not compulsory.
Although it is not recommended, a program may have
several STOP statements numbered STOP 1, STOP 2, etc,
at different places within the program.

Line 13 The end statement indicates the end of the program or
subprogram. It is good practice to include the name of the
program in this line, as shown.

When you have typed in the program, compile, link and run the program as
described in the next section.

4.2 Compilation and linking

Once you have created your source file mult1.f90, you can compile and
link it in one step using the pgf90 command. At a Linux command prompt,
type:

pgf90 -o mult1 mult1.f90

where the basic command is pgf90 mult1.f90 and the option -o mult1 is
used to name the output file mult1. If you omit this option, your executable
file will be called a.out, regardless of the name of your source file.

8 Guide 138: An Introduction to programming in Fortran 90

Note: on the ITS Sun UNIX service, the compilation and linking command is
f90.

If the compilation and linking process was successful, pgf90 will run without
displaying any messages. If any errors occurred during compilation or
linking, error messages will be displayed. Go back to the text editor and
correct the errors in mult1.f90, then save, re-compile and re-link.

Once the compilation and linking have been completed successfully, you
will have an executable file called mult1.

4.3 Running the program

To run the mult1 executable, simply type its name:

mult1

If your program compiled, linked and ran first time without errors then go
back to the editor and deliberately introduce errors in order to see what
happens - e.g. try changing integer to intger in the declaration statement
and try changing i to ii in line 10. What happens if you leave this second
mistake and remove the implicit none statement? Make sure that you
remember to correct your program afterwards!

4.4 Removing old files

At the end of this first exercise you will have generated some files. The
mult1.f90 source file that you typed is useful to keep for future reference,
but you can delete the executable file mult1, which is using up space. If
you have a mult1.o file, that can be removed too. The executable and
object files can be regenerated from mult1.f90 if you need them again.

In the next exercise you will need to modify your mult1 program. Instead of
editing mult1.f90, it is a good idea to copy mult1.f90 to another file, e.g.
mult2.f90, then work on this new file. When you are developing a new
program in a series of stages it is always a good idea to take copies as you
go along and leave previous (working) versions in case your modified
program does not work and you cannot remember exactly how the original
was written! So always keep backup copies of your source files.

Exercise

In this exercise you will write a simple program that reads any two integers
typed on the keyboard and writes the two integers and their product on the
screen. To work through this section, first make a copy of mult1.f90 and
call the copy mult2.f90.

One of the problems with mult1 is that if you want to multiply any other pair
of integers, instead of 5 and 8, then you need to modify the program each
time. An alternative, more efficient approach is to modify the program so
that you can input any two integers and then multiply these. In order to do
this you should remove lines 8 and 9 from mult2.f90, i.e. the lines:

i = 5
j = 8

Guide 138: An Introduction to programming in Fortran 90 9

and replace them with the single line:

read(*,*)i,j

This read statement tells the computer to expect to receive two values from
the keyboard when the program runs. When it receives the two values, it
will place them in order in the integer variables i and j. Note that the list of
variables in a read statement must be separated by commas.

In this example the first * in the brackets is an instruction to use the default
source of information, which is the keyboard, and the second * tells the
computer to interpret the two values in an appropriate default manner - in
this case as integers because i and j have been declared as integers. Later
in the course you will see how to specify a different source of information
(e.g. a file) and a particular format for the incoming information.

When you have made the necessary changes to mult2.f90, compile, link
and run your new program. The program will pause to allow you to input the
information required. Type in 5,8 or 5 8 and then press the Enter key and
you should then obtain the same result as with mult1. With this new
program, however, you can multiply any two integers.

This program is still not very “user-friendly”. For example there is no
indication that the program is waiting for the input of numbers. To improve
this, include the following write statement before the read statement:

 write(*,*) ‘Enter the two integers to be multiplied’

Anything that is written between the two apostrophes will appear on the screen
when the modified program is run. Try it!

More user-friendly output can also be obtained by mixing text and results in
the following manner. Try replacing the simple output statement:

write(*,*)i,j,k

with the following version:

write(*,*)' The product of ',i,' and ',j,' is ',k

As you can see, anything between pairs of apostrophes is written literally to
the screen as a character string, while the other items (i, j and k) which are
not between apostrophes are recognised as variables and their value is
written.

Later in the course you will see how to customise the format of your output
using a format statement.

Exercise

Modify mult2.f90 so that it operates with real variables x,y,z instead of
integer i,j,k and name the altered program mult3.f90. How does the
answer differ from the answer given by mult2?

10 Guide 138: An Introduction to programming in Fortran 90

Next, modify mult3.f90 so that it operates with double precision variables
x,y,z instead of real x,y,z and name the altered program mult4.f90. What
changes do you notice in your answers?

5. Converting between types of variable
In the exercises above you experimented with some different types of
variable. It is important to use appropriate variable types in your program,
or it may not work properly. For example, the following program shows
what happens when two integers are divided. Type the program into a file
named divide1.f90:

program divide1
implicit none
integer:: i,j
real:: x
!
! Program to demonstrate integer division.
!
write(*,*)' Enter two integers'
read(*,*)i,j
x = i / j
write(*,*) i,' divided by ',j,' is ',x
stop
end program divide1

Compile and link this program, and then run it for some trial values of i and
j. You will see that the results are only correct when i is an exact multiple of
j. In any other case, the result is truncated to an integer even though x is
real. This happens because of the way the statement is calculated. The
right hand side of the line x = i/j is calculated first. Both i and j are integers,
so the result of i/j is also an integer. The integer result is then converted to
a real number to be stored in x, but the truncation has already occurred.
Accidental integer division is a common error in programming.

In order to obtain the true (possibly non-integer) ratio of any pair of
integers, copy your program to a new file divide2.f90 and alter the line

x = i / j

of your new program to:

x=real(i)/real(j)

real converts an integer value into a real value and thus the division now
involves two real numbers. Check that your new program gives the correct
answer. Note that it would not have been sufficient to write real(i/j). Why
not?

real is called an intrinsic function because it is a function that is built-in to
Fortran. Some other intrinsic functions for conversion between different
number types are:

 dble transform a variable to double precision
 int truncate a real number to an integer
 nint round a real number to the nearest integer

Guide 138: An Introduction to programming in Fortran 90 11

Reminder! At this point you will have a number of files taking up disk space.
Delete any that you do not need (but keep the .f90 source files for later
reference).

Exercise

Write a program (inv.f90) to read a real number, take the inverse and show
the result on the screen. Write a second version (inv2.f90) that works in
double precision. Run the two versions of your program, using the number
7 as input, and compare the results.

6. The hierarchy of operations in Fortran
You have already seen that the order of operations matters. In general, the
computer takes the following steps when executing an assignment
statement:

1) it calculates the result on the right hand side of the statement in a form
appropriate to the types involved,

2) it looks at the type of the variable on the left and finally,

3) it converts the result on the right in order to assign a value to the
variable on the left hand side.

The first of these steps often involves evaluating an arithmetic expression.
When a general Fortran arithmetic expression is computed there is a strict
order in which the component parts of the expression are evaluated. The
order is:

1) Terms in (round) brackets starting from the innermost brackets and
working outwards.

2) Exponentials working from right to left (Note that xy is written x**y in
Fortran).

3) Multiplication (denoted by a single *) and division, working from left to
right.

4) Additions and subtractions working from left to right.

Note that consecutive mathematical operators are not allowed. Some
examples of invalid expressions and corrected versions are:

Incorrect Problem Correct

A**-B consecutive operators A**(-B)

A(B+3.6) missing operator A*(B+3.6)

A*2.75-B*(C+D)) unpaired brackets A*(2.75-B*(C+D))

Exercise

Write a program, order.f90, to evaluate the following three expressions:

12 Guide 138: An Introduction to programming in Fortran 90

x=a*b+c*d+e/f**g
y=a*(b+c)*d+(e/f)**g
z=a*(b+c)*(d+e)/f**g

where all variables are of type real. Set trial values for the variables and
convince yourself that the expressions are evaluated according to the
described hierarchy.

Guide 138: An Introduction to programming in Fortran 90 13

An introduction to Fortran 90: PART 2

7. About input and output
So far in the course you have used simple "free format" read and write
statements to control input from the keyboard and output to the screen.
This section shows how to extend these to:

• Accept input from sources other than the keyboard and direct output to
locations other than the screen (e.g. to a file).

• Specify the precise format of the input or output.

7.1 Redirection of input/output

By default, input is read from the keyboard and output is displayed on the
screen. These defaults are indicated by the first * in the read(*,*) or
write(*,*) statement. When you want to read from somewhere else, or to
write to somewhere else, this * should be replaced with a unit identifier
which identifies a particular location for the input or output. The unit
identifier is simply an integer or an integer expression. It is best to use
small, positive integers (less than 64) because the permissible range varies
between systems.

Note that, by tradition, unit 5 is used as a default for the standard input unit
(almost always the keyboard), 6 is a default for the standard output unit
(almost always the screen) and 0 is the default unit for errors, so when you
use other files/devices it is normal not to use these numbers.

Apart from the keyboard for input and the screen for output, the most
frequent location for input/output is a file. Before a file can be accessed
from a read or write statement in your program, the program must make a
connection between the actual file concerned and the Fortran unit. This is
done with an open statement.

Example

Imagine that you wish to read some input from a file called info.dat which
is in the directory /scratch/share/dxy3abc. You could use 10 as the
number for this input unit. In order to make a connection to the file, you
would include the following statement in the program, before the first time
you try to read from the file:

open(10,file='/scratch/share/dxy3abc/info.dat')

Notice that the filename /scratch/share/dxy3abc/info.dat is in quotes as is
normally the case for character strings in Fortran. You can also use the
lengthier, more explicit version of the statement:

open(unit=10,file='/scratch/share/dxy3abc/info.dat')

After the open statement, any subsequent references to unit 10 in read
statements will automatically be directed to this file. So, for example, in
order to read data from info.dat you might use:

14 Guide 138: An Introduction to programming in Fortran 90

read(10,*)k,l,m

to read free-format data from the file into the three integer variables k, l and
m. Each successive read will (normally) cause input to be read from the
next line in the file.

Writing to a specific location is done in exactly the same way as reading. In
order to write to unit 11 (a file), we would first need to open the file and
then use, for example:

write(11,*)k,l,m

As with read statements, each successive write statement will normally
direct output to the next line in the file.

When a file is no longer required (e.g. when the program has finished
reading data from it) the connection between the unit identifier and the file
should be closed by making use of the close statement. To close the
connection with unit 10, the statement would be:

close(10)

Note: output files may appear incomplete or empty until the close
statement has been executed or the program exits.

Exercise

As a demonstration of output to a file, type the following program into a file
called output1.f90, then compile, link and run the program and inspect the
results in the file out.dat, which will be in your current directory. Note that
the program writes no output on the screen, only to the file.

program output1
implicit none
integer:: iyears, imonths, iage
character (LEN=30):: name
!
! Simple program to send output to a file.
!
write(*,*)' Hello. What is your name (type it in single quotes)'
read(*,*)name
write(*,*)' How old are you (years and months)?'
read(*,*)iyears, imonths
iage = iyears * 12 + imonths
open(1,file='out.dat')
write(1,*)name, ' is ',iage,' months old!'
close(1)
stop
end program output

Guide 138: An Introduction to programming in Fortran 90 15

7.2 Formatting input and output

Sometimes the default format that Fortran uses for input and output is not
sufficient. For example, you may need to read data from a file that contains
a specific layout, or you may want a neater layout for your output. You can
control the format of input or output with a format statement. Format
statements have a particular syntax, for example:

10 format(i2,i4)

Every format statement begins with a number that identifies it, called the
statement label. After the statement label there is a space and then the
word format. The expression in the brackets defines the precise format in
which the data are to be input/output. The example above uses I-format,
which is for integers. The i2 indicates that the first item is an integer
composed of two digits, and the i4 indicates that the next item is a four-digit
integer. Unlike executable statements, a non-executable format statement
like this one can appear anywhere within the program, before or after the
associated read/write statement. It can also be used with more than one
read/write. In a program with many format statements, it is a good idea to
group them together at the beginning or end of the program so that it is
easy to find them.

Note: if a format statement continues over more than one line, it should
have a & character at the end of the first line and another & at the
beginning of the next line.

To make use of a format statement, replace the second * in a read
statement or a write statement by the label for the format statement. For
example:

write(*,10) i,j,k

10 format(i2,i4,i10)

This example again uses I-format. It writes the variables i, j and k as a 2-
digit integer, a 4-digit integer and a 10-digit integer.

When you use a format statement with a write statement, the formats do
not necessarily have to match the number of digits in each variable. If a
number is smaller than the size allowed in the format statement, it will be
padded with spaces (to the left of the number). If it is too large for the
format, then it will be replaced by a row of ***** -- if this happens you will
probably need to edit your program to solve the problem.

When you use a format statement with a read statement, be more careful.
If the format you specify is too small for the number you want to read, it will
be truncated (i.e. wrong). If the format is too large, you may read characters
that should not be included.

Note: for short format statements that you will use only once, the format
can be inserted directly into the read/write statement in the following way:

write(*,'(i2,i4, i10)') i,j,k

16 Guide 138: An Introduction to programming in Fortran 90

The I-format that you have seen so far is for integers. Other format types
are used for the other variable types. The most commonly encountered
formats are:

Type Syntax Example Data/Output Description

integer Iw i3 123
 12
-98

w is the total number of
characters, i.e. the width.

real Fw.d f8.3 1234.678
-234.678

w is the total number of
characters including the
decimal point if present and d
is the number of digits after
the decimal point

character Aw a5 Abcde w is the total number of
characters

Space x 1x spaces (when writing), or
characters to skip (reading)

In the descriptions of the formats, the term character is used to indicate the
symbols on the screen, whether they are digits, letters or spaces. In the
case of numbers the characters are interpreted in the form of the
appropriate integer or real numbers. Whenever the decimal point is
included, it counts as one character in the field width. The total field width
includes any minus sign and any leading spaces.

To specify multiples of a format, prefix the format specification with the
number involved. For example, to read one 2-digit integer followed by two
8-digit integers, you could use the format statement:

10 format(i2,2i8)

It is also possible to specify where new lines start, using the / symbol. To
read four 3-digit integers from line 1 of the file and another two from line 2,
the format statement could be:

10 format(4i3/2i3)

Any data on line 1 beyond the first four integers will be ignored.

Note that a comma is required to separate the items in a format statement,
except when there is a / between them to indicate that data continue on the
next line.

Normally the number of variables in a read or write statement should
match the number of items in the format statement. If there are more
variables than items in the format statement, as in the example below, the
format is simply repeated until all the variables have been processed.

read(1,10) i,j,k,l,m,n
10 format(3i2)

Here, i, j and k will be read from one line and l, m and n would be read from
the next line in the same format.

Guide 138: An Introduction to programming in Fortran 90 17

Note that on some computers, unless the output is being directed to a file,
the first character of each line may be treated as a "carriage control"
character when the output is displayed or printed and, unless you ensure
that the first character is a space, the output may not look as you intended.
(In particular, you may lose a minus sign or the first character of the field!).
For this reason, you will find that programs often begin output formats with
a space (1x). For more information on this topic, please consult the sources
listed at the end of the course.

Exercise

When you read data, you will often find it easier not to use a format
statement, because the data are forced into the format that you specify. To
illustrate this point, type the following program into a file called format1.f90

program format1
implicit none
integer:: i, j
real:: x
character(len=10):: mychars
!
! Simple program to demonstrate the use of the format statement
!
write(*,*)' Enter digits 0 to 9 twice in succession '
read(*,100)mychars, i, x, j
100 format(1x, a5, i5, f6.2, i3)
write(*,*)mychars, i, j, x
stop
end program format1

Run the program and enter 01234567890123456789 when requested.

The 1x in the format statement causes the first digit (0) to be skipped. The
next 5 digits, 1 to 5, are interpreted as characters (a5) and are entered into
the first 5 places of the 10-character variable, mychars. The integer value
67890 is placed in variable i according to the i5 specification. The next 6
digits, 123456 , are interpreted as 1234.56 because of the f6.2 and are
placed in x and, finally, j is given the value 789 as required by the i3
format. Check this by looking at your output. Then see what happens if

(a) you change the format statement to

100 format(a8, i4, 2x, f4.2, i2)

(b) you change the format statement so that it does not match the variable
types, e.g:

100 format(a8, f4.2, 2x, i4, i2)

In the exercise above, you used format f6.2 to deal with the real variable x.
This defined the decimal point to be between the 4th and 5th digit in the
format and it was inserted there even though there was no decimal point in
the input data. In practice, the decimal point should usually be included in
the input data: provided that the number fits into the field width, it will be
recognised correctly. If the number is negative then the minus sign must
also fit within the field.

18 Guide 138: An Introduction to programming in Fortran 90

7.3 E format and D format

A frequent problem with formatted output is that a number is too big to fit
into the specified field width. For example, 9999999.0 does not fit into
format F6.2, which can only deal with the correct output of numbers up to
999.99. When this happens, the entire number is replaced in the output by
asterisks, e.g. ******. If you are not sure how big an answer will be, consider
whether it would be better to display it with E-format (exponential format),
which is the best way to display numbers that are (or could be) very large
or very small.

For example, a number 1.234567 x 10-12 displayed in E14.7 format would
appear as:

0.1234567E-11

where the E14.7 specifies 7 characters after the decimal point and 7 other
characters. There is an equivalent D-descriptor form for double precision
numbers. For example, D14.7 format would give output such as:

0.1234567D-11

Note that the total width of E- and D- format fields (14 in these examples)
must be big enough to accommodate any minus sign, the decimal point and
the E-nn, so it is recommended that the total field width should always be at
least 7 places more than the number of digits required after the decimal
point.

Exercise

To practise using format statements, make a copy of your program
output1.f90 and call the copy output2.f90. In output2.f90, change the line:

write(1,*) name, ' is ',iage,' months old!'

to

write(1,100) name, iage
100 format(a30,' is ',i4,' months old!')

Check that the output matches the format statement.

8. More intrinsic functions
You have already seen the intrinsic functions real, dble, int and nint, which
converted variable values from one type to another. Fortran 90 has over
100 intrinsic functions. Some of the most frequently used ones are:

Guide 138: An Introduction to programming in Fortran 90 19

Function Action of function
sqrt(x) square root of x
abs(x) absolute value of x
sin(x) sine of x (x in radians)
cos(x) cosine of x (x in radians)
tan(x) tangent of x (x in radians)
asin(x) sin-1(x) (result 0 � �)
acos(x) cos-1(x) (result -�/2 � �/2)
atan(x) tan-1(x) (result -�/2 � �/2)
exp(x) ex

alog(x) loge(x)
alog10(x) log10(x)

In this list, x represents any real or double precision variable, constant or
expression. These functions will not accept integer arguments. The output
of the function will be real for real x and double precision for double
precision x.

Note: all trigonometric functions use radians and not degrees. 2� radians =
360 degrees.

Exercises

1) The formula for calculating compound interest is:

nyearsratestartfinal ⎟
⎠
⎞

⎜
⎝
⎛ +=

100
1

where final is the final value, start is the start value, rate is the
annual interest rate in percent, and nyears is the number of years.
Write a program called money.f90 that calculates the value of a
£1000 investment after 5 years, for interest rates of 2, 4, 6 and 8%
and writes the interest rates and results neatly on the screen and in
a file called mymoney.

2) Write a program readmoney.f90 which reads the interest rates and final
sums from the file mymoney and then displays them on the screen.

3) Write a program called trig.f90 that prompts for an angle in degrees from
the keyboard and then prints out neatly on the screen the sine, cosine
and tangent of the angle.

20 Guide 138: An Introduction to programming in Fortran 90

An introduction to Fortran 90: PART 3

9. Arrays
So far in this course, you have dealt with variables which have one value.
But this would be a difficult way to work with a vector or matrix, which could
contain many values. Instead, vectors and matrices can be stored in arrays,
which can contain many elements. Individual elements of the array are
identified by the use of subscripts. For example, the position vector of a
point in space (x,y,z) could be represented by the one-dimensional array r.
Array r would contain 3 elements, with r(1) representing the x coordinate,
r(2) the y coordinate and r(3) the z coordinate.

Fortran 90 allows arrays to have up to 7 dimensions. An array is declared in
the normal way using a declaration at the beginning of the program, but
both the type of array (real, integer, etc) and the dimensions of the array
must be declared. So, for example, the 3-element vector above might be
declared as

real,dimension(3)::r

This states that r is an array with three elements in one dimension. Since r
is declared as a real array, each element of r will contain a real value.
Similarly, a 2 by 3 integer matrix might be declared as:

integer,dimension(2,3)::mymat

and every element of mymat would be an integer. Note that the array
mymat has 2 rows and 3 columns.

Note that it would also be possible to declare mymat as:

integer::mymat(2,3)

This format is more convenient when you wish to declare arrays of different
sizes in the same declaration statement.

Fortran 90 allows you to perform calculations with an array in one of
several ways:

• apply the same operation to all elements of the array, e.g. multiplying by
2.

• apply a single operation to the whole array, e.g. calculating the sum of
the elements.

• perform a calculation on individual elements.
• perform a calculation with elements that match a certain condition, e.g.

all elements with values greater than zero.

The following subsections describe these options.

9.1 Whole array elemental operations

Fortran 90 allows you to perform calculations on all the elements of an
array at once using whole-array elemental operations. Nearly all intrinsic

Guide 138: An Introduction to programming in Fortran 90 21

functions work on arrays, so if a and b are arrays with the same shape,
then the following are all valid:

Statement Resulting value of each element of array b
b=a+2 2 more than the corresponding element of a
b=a-2 2 less than the corresponding element of a
b=a*2 2 times the corresponding element of a
b=a*c the corresponding element of a multiplied by the corresponding

element of array c
b=a/c the corresponding element of a divided by the corresponding

element of c
b=a**n the corresponding element of a raised to its n'th power
b=1.0 1.0
b=a the corresponding element of a
b=cos(a) the cosine of the corresponding element of a
b=sqrt(a) the square root of the corresponding element of a

Type in the simple program below, which reads in the components of two
vectors and then calculates the sum of the vectors. Call your program
vector1.f90. Use some trial values to check that the program sums the
vectors correctly.

program vector1
! Program to add two vectors
implicit none
real, dimension(3):: vect1, vect2, vectsum
!
! Read in the elements of the two vectors
!
write(*,*)' Enter the three components of vector 1: '
read(*,*) vect1
write(*,*)' Enter the three components of vector 2: '
read(*,*) vect2
!
! Now add the vectors together by adding their components
!
vectsum = vect1 + vect2
write(*,10) vectsum
!
10 format(' The sum of the vectors is: ', 3f6.2)
stop
end program vector1

9.2 Whole array operations

Some intrinsic functions work on arrays in a different way. For example, the
sum function operates on a whole array to find the sum of all the elements.
Unlike the functions that you have used so far, this function is specific to
arrays. Some more intrinsic functions that are specific to arrays are:

Command Example Effect
product product(a) Product of all the elements in array a
sum sum(a) Sum of all the elements in array a

22 Guide 138: An Introduction to programming in Fortran 90

dot_product dot_product(v1,v2) Dot product of vectors v1 and v2
matmul matmul(a,b) Multiply two conformal matrices a and b
maxval maxval(a) Maximum value in array a
minval minval(a) Minimum value in array a
maxloc maxloc(a) Array of location(s) of the maximum

value in array a
minloc minloc(a) Array of location(s) of the minimum

value in array a

Exercise

The length of a vector r is given by 2
3

2
2

2
1 rrr ++ , where r1, r2 and r3 are

the components of the vector. Edit your program vector1.f90 to find the
length rlen of the vector vectsum. Call your new program vector2.f90 and
test it with some trial values.

Hint: try the functions sqrt and sum.

9.3 Working with subsections of arrays

9.3.1 Selecting individual array elements

If you wish to work with a single element of an array, refer to it specifically.
For example, the three elements of vector vect1 are referred to as vect1(1),
vect1(2) and vect1(3), so the length of vect1 could be calculated explicitly
as:

length = sqrt(vect1(1)**2 + vect1(2)**2 + vect1(3)**2)

When you work with multi-dimensional arrays, it is important to know which
subscript refers to which dimension, e.g. when you multiply two matrices.
The pattern of the elements in a 2 by 3 matrix mymat can be visualised as:

(1,1) (1,2) (1,3)
(2,1) (2,2) (2,3)

so the top left element would be mymat(1,1) and the bottom right one
would be mymat(2,3).

Note that array element numbering starts by default at element 1 (not zero).
It is possible to assign a different range for the subscripts which identify the
elements in the array. For example, in the above case a 2 by 3 integer
array could also have been declared in the form:

integer,dimension(0:1,-1:1):: mymatrix

In this case the array is of the same 2 by 3 form but the range of the
subscripts has been changed and the pattern of elements can now be
visualised as:

(0,-1) (0,0) (0,1)
(1,-1) (1,0) (1,1)

and the array elements must now be addressed using the modified
subscript indices. If you choose to reference your arrays in this way, you

Guide 138: An Introduction to programming in Fortran 90 23

should be aware that functions such as maxloc give the location of an
element, not the subscript.

Note: One of the most frequent problems with arrays is an array bound
error. This occurs when a program attempts to read or write to an array
element that does not exist, such as the 11th element of a 10-element array.
Section 12 describes how to use the compiler to help avoid or correct such
errors.

Exercise

Write a program mat1.f90 that requests two 2x2 integer matrices from the
keyboard and then multiplies them. Using references to individual array
elements, display the input matrices and the result in the order:

(1,1) (1,2)
(2,1) (2,2)

Check that the ordering of elements in the matrices is as you expected and
that the multiplication is correct for this ordering.

9.3.2 Selecting array sections

A subsection of an array can be selected by specifying a range of
subscripts. For example, the selection mymat(1:2,2:3) would select these
elements from a 4 by 4 matrix:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−−−
−−−−
−−
−−

**
**

If one end of the range is left out, the lower or upper bound of the array is
used as a default. The following examples are valid subsections of arrays:

mymat(3,3:4) Row 3, columns 3 - 4

mymat(3,2:) Row 3, all columns from column 2 to the end column

mymat(3,:) Row 3, all columns

mymat(3:3,3:3) Single element: row 3, column 3.

9.3.3 Using masks

Sometimes you may not wish to apply a function to every element in an
array. For example, it would not be appropriate to apply the log function to
elements with negative values. Under these circumstances, use of a mask
allows you specify which elements to include.

To illustrate use of a mask, consider the following statement:

where(a>0) b = log(a)

24 Guide 138: An Introduction to programming in Fortran 90

The where statement is used to perform an array operation only on
elements where a certain logical condition is true. In the example above, a
and b are arrays with the same shape. The beginning of the statement,
where (a>0), generates a mask of locations where the elements of a have
values greater than zero. This mask is then applied to the rest of the
statement. So the whole statement causes the operation b=log(a) to be
performed for all elements of a that are greater than zero. Wherever a is
zero or less than zero, the operation is not performed and the
corresponding element of b is unchanged.

The condition a>0 that forms the core of this example is a logical
expression: the value of the expression is either .true. or .false.. Part 4 of
this course gives more details of how to construct and use logical
expressions to control the operation of your programs, including information
on how to construct longer where statements.

Most array-based functions can use a mask directly. The examples in the
table below are functions that make particular use of a mask:

Function Examples Description of function

all all(a>1.0)
all(a>0.0, dim=1)

Returns logical value .true. if the mask
condition is true for all values (in given
dimension, if specified).

any any(a>=1.0)
any(a>0.0,dim=1)

Returns logical value .true. if the mask
condition is true for any values.

count Count(a>0.0) Number of values which match the mask
condition.

maxval maxval(a,dim=1)
maxval(a,a<=0.0)

Maximum value in the given dimension or
among elements that match the specified
mask.

minval minval(a,a>b) As maxval, but gives the minimum value.

Exercise

Imagine that your department has asked you to write a program that
records students' exam marks. Every student who scores more than 50%
has passed the exam. You will need to use arrays to record the students'
names, their marks and whether they have passed. The department has
also asked that you calculate the total number who have passed, the
average mark, and identify the person with the top mark. Write a prototype
program called results1.f90 which processes results for 5 students and
produces output similar to the following:

Student: Fred Susie Tom Anita Peter
Mark: 64 57 49 71 37
Pass? P P P

No. of passes = 3
Average mark = 55.6

Guide 138: An Introduction to programming in Fortran 90 25

Prize awarded to Anita

9.4 Allocatable arrays

All the arrays that you have seen so far have been declared with a fixed
size. Space for fixed-size arrays is allocated when a program is compiled
and it cannot be changed without editing the program. Sometimes this can
be inconvenient, for example when you do not know the size of the array in
advance, or when you would like to re-use the memory space taken up by a
large array that is used only for a short time within a program. Under these
circumstances it can be more useful to use allocatable arrays.

The space for allocatable arrays is allocated in a manner similar to the way
that files are opened and closed: you must allocate space for the array
before you use it, and you must deallocate the space when you have
finished with the array.

Since the size of an allocatable array is not known at the beginning of the
program, its declaration gives the dimension of the array but not the size.
Colons (:) are used to indicate the number of dimensions. The following
statement declares an allocatable, 2-dimensional array:

real, dimension(:,:), allocatable:: myarray

Later on in the program, the size of the array is calculated in some way and
space for the array is allocated. Notice that the size of each dimension
must be an integer, e.g:

read(*,*) idim1, idim2
allocate(myarray(idim1,idim2))

Now that space for it has been allocated, the array myarray can be used as
usual. Once it is no longer needed, the memory space is freed by the
deallocate command:

deallocate(myarray)

Useful functions for working with allocatable arrays include:

allocated allocated(myarray) Returns logical .true. if the
array is allocated.

shape dims = shape(myarray) Returns an integer array
containing the sizes of each
dimension in the array.

size length = size(myarray)

len2 = size(myarray,dim=1)

Returns an integer number
which is the total number of
elements in the array, or the
number of elements in the
specified dimension.

26 Guide 138: An Introduction to programming in Fortran 90

Some examples of allocatable arrays are given later in this course.

10. Parameters and initial values
If you have a program with many arrays, it can be difficult to remember why
particular arrays have particular sizes. One way round this is to use
parameters in your array declarations, as illustrated below:

program arrays
integer,parameter:: imax=100, jmax=200
real,dimension(imax):: array1
real,dimension(imax,jmax+imax):: array2
real,dimension(3):: array3
etc....

In this program fragment, definitions of some parameters are included
among the declarations. The parameters are not variables because they
cannot be changed later in the program. Notice that the value of the
parameter is set in its declaration statement.

Once it has been declared, a parameter can be used wherever you would
use a constant, including in array declarations as shown. This can help
avoid errors if you edit your program later to accommodate different array
sizes, because you need only make the changes in one place. Notice the
position of the parameter declaration: it must come before the parameters
are used.

Values for variables can also be set in the declaration statements.
However, because the values of variables can be changed during operation
of the program, these will be initial values only. The example above could
have initialised the three arrays as follows:

Prog1ram arrays
integer,parameter:: imax=100, jmax=200
real,parameter:: pi=3.14159
real,dimension(imax):: array1=pi
real,dimension(imax,jmax+imax):: array2=0.0
real,dimension(3):: array3=(/1.5,2.0,2.5/)
etc....

All the elements in an array can be set to the same initial value as shown
for array1 and array2, while the syntax for entering several initial values is
shown for array3. Notice that initial values can only be constant
expressions.

Exercise

Edit your program results1.f90 so that the number of students in the class
is described as a parameter.

Guide 138: An Introduction to programming in Fortran 90 27

An introduction to Fortran 90: PART 4

11. Program control: DO loops and IF statements
A program normally executes statements in the order that they appear.
That is, the first statement is executed first, and then each subsequent
statement is executed in turn until the end is reached. Sometimes this will
be too simple for your programming needs. In this section of the course,
you will see how to repeat sections of your program with do loops and how
to use if statements to choose whether to execute parts of your program.

11.1 DO... END DO loops

A simple do loop has the form:

28 Guide 138: An Introduction to programming in Fortran 90

do index=istart,iend,incr
 statement 1
 statement 2
 statement 3
 etc
end do

This do loop is contained between two statements: the do statement and
an end do statement. All the statements between these lines are executed
a number of times. On the first pass through the loop, the variable index
has the value istart. After this first pass, index is incremented by an amount
incr each time the program goes through the loop. When the value of index
is greater than iend (or, if incr is negative, when index is less than iend)
then the statements inside the loop are not executed and program
execution continues at the line after the end do statement. If the increment
incr is omitted then, by default, incr is assumed to be 1.

Note that istart, iend and incr may be positive or negative constants,
variables or expressions, but they should always be integers.

Notice that the statements in the example do loop are indented by a few
extra spaces. This is a good programming style to use. It helps you see
easily where a loop begins and ends.

Warnings!

• Never use any of the statements inside the loop to alter the do
statement variables index, istart, iend or incr.

• Never attempt to jump into the body of a do loop from outside the loop -
this is illegal.

• Do not assume that index will have the value iend after normal
conclusion of the do loop. Assume that it is undefined. If exit occurs
from the do loop before the normal conclusion, e.g. by use of an exit
statement (see later), then index will retain its value.

Exercise

Type the following program into a file called roots1.f90 and then try running
it with trial values of n.

program roots1
implicit none
integer:: i,n
real:: rooti
!
! Program to demonstrate the use of a DO loop.
!
write(*,*)' Enter an integer'
read(*,*)n
do i=2, 2*n, 2
 rooti=sqrt(real(i))
 write(*,*) i, rooti
end do
stop
end program roots1

This program reads in an integer (n) and then writes out the first n even
numbers, together with their square roots. The do loop starts with the loop

Guide 138: An Introduction to programming in Fortran 90 29

index i set to 2, then executes all statements down to the end do
statement. In the first pass through the loop, the numbers 2 and 2 are
displayed on the screen. At the beginning of the second pass i is
incremented by 2 and takes the value 4. As long as i is not greater than
2*n, the statements will be executed again and the numbers 4 and 2 will be
displayed on the screen. The loop will continue until the last numbers (2n
and n2) are displayed.

Exercise

Alter the program roots1.f90 so that it displays the results in reverse order.
Name the altered program roots2.f90.

Exercise

In part 3 of this course you wrote a program results1.f90, which recorded
the exam marks of 5 students. The head of department is so pleased with
your program that he would like a version that can handle large classes.
Unfortunately, your original output layout is not suitable for larger numbers
of students. Modify your program so that it uses a do loop to display the
arrays in a vertical layout rather than a horizontal one, e.g:

Student: Mark: Pass?

Fred 64 P

Susie 57 P

Tom 49

Anita 71 P

Peter 37

No. of passes = 3
Average mark = 55.6
Prize awarded to Anita

Test the program by entering marks for a larger number of students.

Hint: you may not know how many students are in a class. To make sure
that your arrays are big enough to handle a whole class, either use
allocatable arrays or declare the arrays with the maximum dimensions that
you think they could need.

11.2 IF statements

An if statement allows you to choose to execute a part of your program if a
certain condition is true. The example below shows the general layout,
which is similar to a do loop:

if (logical expression) then
 statement 1
 statement 2
 statement 3
 etc
end if

30 Guide 138: An Introduction to programming in Fortran 90

The if and end if statements enclose a block of statements, which should
be indented to help you see where the if block starts and ends. The if
statement contains a logical expression in brackets, which can have a
result of either .true. or .false.. If the result of the logical expression is
.true. then all the statements inside the block are executed. If the result of
the logical expression is .false. the statements are not executed.

The logical expression in an if statement is constructed from a special
syntax which uses logical operators. These are similar to normal operators
but do not set the values of variables - they just compare them. Some
examples of logical operators are given below, together with an illustration
of their use:

Operator Alternative
(older) form

Example Explanation

== .eq. if(i == j) then… equals

> .gt. if(i.gt.j) then… greater than

>= .ge. if(i.ge.j) then… greater than or equal to

< .lt. if(i < j) then… less than

<= .le. if(i<=j) then… less than or equal to

/= .ne. if(i.ne.j) then… not equal to

 .not. if(.not. k) then… .true. if k is .false. and
.false. if k is .true.

 .or. if(i>j.or.j<k) then… logical or
 .and. if(i>j.and.j<k) then… logical and

Note that there are two forms of most of the logical operators. Use
whichever you prefer. There are two forms because only the older form
(e.g. .le.) was available in previous versions of Fortran and this form is still
permitted as an alternative to the newer form.

A logical expression is evaluated in the following order:

1) Arithmetic operations are evaluated first and then followed by, in order:

2) .eq., .ne., .gt., .ge., .lt. and .le. have equal precedence and are
evaluated from left to right. These operators are identical to: ==, /=, >,
>=, < and <=.

3) .not. operators.

4) .and. operators, from left to right.

5) .or. operators, from left to right.

As with arithmetic operations, you can use brackets to change the order of
evaluation.

Guide 138: An Introduction to programming in Fortran 90 31

Warning! .eq. should NOT be used to compare the values of real or
double precision variables. Real variables are held only to machine
precision so, instead of using .eq. to see if they are equal, use .ge. or .le. to
check whether the difference between two real numbers is small.

Logical variables need not be compared to anything, since they can only
have the values .true. or .false. . If mylog is a logical variable, then it can
be used in a logical expression as follows:

if(mylog) succeeds if mylog is .true.
if(.not.mylog) succeeds if mylog is .false.

A more complicated example of a logical expression is the following:

if (a.le.b.and.i.eq.n.and..not.mylog) then
 statements
end if

which identical to:

if (a<=b.and.i==n.and..not.mylog) then
 statements
end if

The block of statements inside the if statement will only be executed if the
value of the variable a is less or equal to that of b and i is equal to n and
the logical variable mylog has the value .false. (i.e. if .not.mylog = .true.).
Note that two full stops are needed when two old-style logical operators are
next to each other (.and. and .not. in this case).

An if statement can be extended to choose between two options by
including an else statement:

if (logical expression) then
 first block of statements
 else
 second block of statements
end if

The choice can be extended even further by using one or more else if
statements, e.g:

if (logical expression 1) then
 statement block 1
 else if (logical expression 2) then
 statement block 2
 else
 statement block 3
end if

Note: if there is only a single statement inside the if block, then a single line
form of the if can be used, e.g:

if (logical expression) statement

The then and end if statements are not required in this case.

32 Guide 138: An Introduction to programming in Fortran 90

Exercise

To test the use of the if statement and logical expressions, try out the
following program, testif.f90:

program testif
implicit none
real:: a,b
logical:: logicv
!
! Simple program to demonstrate use of IF statement
!
write(*,*)' Enter a value for real number A '
read(*,*)a
write(*,*)' Enter a value for real number B '
read(*,*)b
write(*,*)' Enter .true. or .false. for value of logicv '
read(*,*)logicv
!
if (a<=b.and.logicv) then
 write(*,*)'a is less or equal to b AND logicv is .true.'
else
 write(*,*)'Either a is greater than b OR logicv is .false.'
end if
!
stop
end program testif

Exercise

Modify your program testif.f90 to include a do loop which runs through the
test in the above program for five different sets of variables before coming
to a stop. Don't forget to modify the indentation accordingly!

11.2.1 More about the where statement

Earlier in the course the where statement was introduced. This is similar to
an array version of the if statement and also uses logical expressions to
determine which actions to take. As for the if statement, there is a longer
form of the where statement that allows you to perform several array
operations under the same logical conditions. For example:

where(a>0)
 b = log(a)
 c = sqrt(a)
end where

and it is also possible to specify operations to perform when the condition is
not true:

where(a>0)
 b = log(a)
 c = sqrt(a)
elsewhere
 b = -999.0
 c = -sqrt(a)
end where

Guide 138: An Introduction to programming in Fortran 90 33

Remember that the where statement is used with arrays, so a, b and c in
this example are all arrays.

11.3 CASE statements

Repeated if..then..else statements can often be replaced by a case
statement, for example:

select case season
case ('summer')
 leaves = .true.
 sun = .true.
case('winter')
 leaves = .false.
 sun = .false.
case('spring','autumn')
 leaves = .true.
 sun = .false.
case default
 write(*,*) 'mistake in season name'
end select

The case statement chooses which operations to perform, depending on
the value of an expression that can be integer, character or logical, but
not real or double precision. In the example above, the case statement
depends on the value of the character variable season. Note that:

• For any value of season only one of the cases is executed.
• The statement case('spring','autumn') shows how to execute the

same set of operations for any one of a list of cases.
• The case default is optional and will be executed if none of the other

cases is matched.

11.4 Controlling DO loops with logical expressions

A simple do loop executes a fixed number of times. Sometimes this may
not be appropriate so Fortran 90 allows some variations, which are
discussed in this section.

11.4.1 Conditional exit loops

In these, the loop is terminated by a conditional exit statement, ie. an if
statement which executes an exit action. Note that the loop can be infinite
if the exit is never executed! This is a potential problem with all do loops
that do not have a fixed number of iterations.

do
 statements
 if (logical expression) exit
 statements
end do

11.4.2 Conditional cycle loops

Conditional cycle loops are constructed in a similar way to the loop shown
above, but the action of the if statement is to cause the program to cycle

34 Guide 138: An Introduction to programming in Fortran 90

immediately to the next iteration of the loop, skipping any remaining
statements in the current cycle.

do
 statements
 if (logical expression) cycle
 statements
end do

11.4.3 DO WHILE loops

A do while loop takes the following form:

do while(logical expression)
 statement 1
 statement 2
 statements
end do

This is very similar to the conditional exit loop. The statements in the do
while block are executed for as long as the result of the logical expression
remains .true.. It is easier to see this in the following example program,
which you should type into the file dowhile.f90 and run:

program dowhile
implicit none
real:: x
logical:: repeat
!
! Simple program to demonstrate DO WHILE loop.
!
repeat=.true.
do while(repeat)
 write(*,*)' Enter a real number x, '
 write(*,*)' or a negative number to exit. '
 read(*,*) x
 if(x.gt.0.0)then
 write(*,*)' The square root is ',sqrt(x)
 else
 repeat=.false.
 end if
end do
stop
end program dowhile

Exercise

Once you have run this program successfully, modify it so that if x<0 it
calculates the square root of (-x) and so that it exits if |x|<0.1.

Exercise

Write a program called quad.f90 to solve the quadratic equation
. The program should ask you to input 3 numbers a, b and

c, then check whether the roots of the equation are real (i.e. check that
) and then, if the roots are real, find them from the formula:

02 =++ cbxax

042 ≥− acb

Guide 138: An Introduction to programming in Fortran 90 35

a
acbbroots

2
42 −±−

=

If the roots are not real, the program should write a message to say this.
Test your program using a=1, b=-3, c=2 and then a=1, b=1, c=2.

11.5 Named DO loops and IF statements

When you have a large number of do loops and/or if statements in your
program, it can sometimes be helpful to name them, e.g:

myloop: do i=1,5
 x(i)=real(i)
end do myloop

and

fred: if (y<x) then
 y=0
end if fred

Why is this useful? One reason is that naming a loop in a conditional exit
statement or a conditional cycle statement allows you additional program
control. For example, if you have several nested do loops (that is, one
inside the other), a conditional cycle statement in the inner loop could
specify cycling either the inner loop or the outer loop. In the program
fragment below, a loop over i encloses a loop over j. For each value of i the
program will run through the loop in j until j=i. After that point it will skip the
rest of the inner loop and cycle to the next iteration of the outer loop.

outer: do i = 1, 10
 inner: do j = 1,10
 if (j>i) cycle outer
 statements
 end do inner
end do outer

11.6 Implied DO loops

A compact way of reading in (or writing out) the elements of an array is by
use of an implied do loop, which is a structure available only for dealing
with input/output. A simple example is to read in the 3 elements of array r:

read(5,*)(r(i), i=1,3)

This statement is a shorthand way of telling the program to read in r(i) with
i taking the values 1 to 3. The structure i=1,3 here has the same meaning
as it does in any normal do loop. So the program will read r(1) followed by
r(2) and finally r(3).

Of course, a loop is not necessary to read in such a simple array. However,
for the 2 by 3 array mymat, we could use a more complicated implied do
loop to write out the array elements in the order mymat(1,1), mymat(1,2),
mymat(1,3), mymat(2,1), mymat(2,2), mymat(2,3) using:

write(6,20)((mymatrix(i, j), j=1,3), i=1,2)
20 format(3i6)

36 Guide 138: An Introduction to programming in Fortran 90

When several implied do loops are nested within each other, each loop is
enclosed in its own pair of brackets. The innermost loop (the j loop in the
example above) is done first.

Exercise

In section you wrote a program called mat1.f90. Edit mat1.f90 so that it
prints its output using an implied do loop. Your output should appear in the
actual pattern of the array.

12. Hints on debugging programs
Typing errors are a common programming problem. In the following
program, the variable x1 has been mis-typed on line 5 as x11 and there is
no implicit none statement to trap this. So, because of Fortran's implicit
typing, x11 is accepted as a real variable when the program is compiled.
The program's output will be wrong but there is no clue to tell you why.

program typo
real:: x1, y1
write(*,10)
read(*,*) x1
y1 = x1 **2 + 2*x11 + 1
write(*,20) x1, y1
10 format('Enter a number: ')
20 format('(',f6.2,' + 1) squared is',f6.2)
end program typo

This error could have been avoided by using an implicit none statement.
An implicit statement should go on the second line of the program,
immediately after the program name. It will tell the compiler not to accept
any variables that have not been declared explicitly.

There are other forms of the implicit statement that you can use to over-
ride Fortran's implicit typing, although they are not recommended. For
example, you could change the default type to double precision for all
variables with beginning with the letters s to z, by using:

implicit double precision (s-z)

If you are looking for a more subtle error in a program, it will often help to
add some write statements to output the values of variables at various
points in the program. This can help you find which part of the program has
a problem and which variables are affected. Some simple things to look for
are:

• Integer division
• Division by zero - this can lead to a 'Not a Number' (NaN) error.
• Problems in mixed-type calculations (e.g. integer and real)
• Integer overflows (i.e. integers that are too large for the integer type)
• Floating point overflows (numbers that are too large for real type)
• Loss of significance, e.g. when one long number is subtracted from

another.
• Brackets in the wrong place

Guide 138: An Introduction to programming in Fortran 90 37

• Accidental use of the letter l instead of number 1, and letter O instead of
number 0. (Do not have variables called O or l!)

• Incorrect declarations, e.g. array variables not declared as arrays
• Use of reserved function names for variables (e.g. sqrt, sin, etc).

You should also avoid giving your programs names that duplicate operating
system commands. For example, 'test' and 'sort' are both Unix commands
and may be run instead of your programs with those names. If you suspect
that this could be happening, type e.g:

which test

To run your program explicitly, type the path to it when you run it, e.g:

~/Fortran/test
./sort

Arrays are a very frequent source of problems in programs. Perhaps the
most frequent type of error is that the program refers to an array element
that does not exist, e.g. the 11th element of a 10-element array. This is
called an array bound error. The program might still run when this happens
(the results will probably be wrong), or the error might cause the program to
crash, perhaps with a segmentation fault.

The compiler does not check for array bound errors unless you include the
option -C, e.g:

pgf90 -C -o myprogram myprogram.f90

If this option is included, the compiler will generate warnings during
compilation if it detects any array bound errors. It will also cause the
program to stop and generate an error message if an array bound error
occurs during execution.

The compiler does not include array bound checking by default because it
slows down the compilation process and increases the size of the
executable file. It might also slow down the program's execution. However,
including the -C option can make it much easier to find array-bound errors
in your programs.

The man page for pgf90 also includes information about the many other
options that can be used. Notice that the options -C (array bound checking)
and -c (compile only, do not link) are different!

Compiling with the -g option allows you to use a debugger program such as
pgdbg, to debug your program. pgdbg is a powerful tool for finding bugs in
large or complicated programs but it also takes some effort to learn.
Although this course does not cover it, you should consider learning pgdbg
if you will be working on large programming projects. (The debugger on the
ITS Suns is called dbx.)

38 Guide 138: An Introduction to programming in Fortran 90

An introduction to Fortran 90: PART 5

13. Subprograms
When you use the intrinsic functions sin, sqrt, etc, you are using examples
of subprograms. The intrinsic functions are included as part of Fortran, but
you can also write your own subprograms. Subprograms are independent
blocks of Fortran which perform a specific task. They may be written and
compiled separately, and are joined to a main program when the program
is linked. In large programming projects, subprograms may be written by
different people.

One of the main advantages of subprograms is that they may be written
and tested as isolated units to ensure that they operate correctly. This
makes the task of developing a large program much easier because it can
be split into a number of smaller sections. A subprogram is normally tested
by writing a simple main program which provides some test data and
displays test results. This way, any errors or "bugs" can be confined to a
relatively small section of code and are much easier to track down and
correct.

Another advantage of subprograms is that they are portable. Once you
have a working, tested subprogram, you can use it in later programs
whenever you need it. This can greatly reduce the effort required in any
large program development project.

We will consider two different ways of constructing subprograms:

• Functions are used by referring to their name (exactly as you would
refer to the intrinsic function sin(x)) and they produce one answer.

• Subroutines are a more general form of subprogram. They can perform
complicated tasks that return one or more answers. Alternatively, a
subroutine that generates a file or some graphics might not return any
answer to the main program.

13.1 Functions

Functions are used to generate a single answer. They should not have
"side-effects", such as writing to the screen, and they usually carry out
relatively simple tasks. A function is self-contained, so it could easily be
copied for use in other programs that need it.

Earlier in the course you wrote a program quad.f90 that solved a quadratic
equation. The example program below, fn1.f90, is very similar: it finds the
real roots of a quadratic equation, provided that real roots exist, and
displays the larger root. The example consists of a main program and one
function subprogram, called bigroot.

The function bigroot tests to see if the roots are real and returns the bigger
one. If the roots are imaginary, bigroot returns an unrealistically large
negative result. The f12.6 format used by the main program to display the
result cannot cope with such a number and therefore a field of *********'s
will be printed to indicate that no real root has been found.

Guide 138: An Introduction to programming in Fortran 90 39

program fn1
implicit none
real:: a,b,c,bigroot
!
! Program to demonstrate the use of a FUNCTION subprogram
!
write(6,10)
read(5,*) a, b, c
write(6,20) bigroot(a, b, c)
10 format(' Enter the coefficients a, b, c '/)
20 format(' The larger root is ',F12.6)
stop
end program fn1
!
! End of main program
!
function bigroot(a, b, c)
implicit none
real:: bigroot, a, b, c, test, root1, root2
!
! Function to find largest root of a quadratic
! If no real roots then function returns value -9.0E35
!
test = b*b - 4.0*a*c
if(test.ge.0.0) then
 root1 = (-b + sqrt(test)) / (2.0 * a)
 root2 = (-b - sqrt(test)) / (2.0 * a)
 if(root2.gt.root1)then
 bigroot = root2
 else
 bigroot = root1
 end if
 else
 bigroot = -9.0e35
end if
return
end function bigroot

Exercise

Modify your program quad.f90 so that it uses functions to find the roots of
the quadratic equation.

Note the following points about functions:

• If the function is written in the same file as the main program, it must
appear after the end of the main program.

• The function must begin with a line that defines it as a function and lists
the arguments, e.g:

function bigroot(a,b,c)

When you use the function to calculate a result, you must give
arguments of the correct type and in the correct order.

40 Guide 138: An Introduction to programming in Fortran 90

• There must be an end statement at the end of the function definition in
order to tell the compiler where the subprogram comes to an end. The
statement can take one of the following forms:

end
end function
end function function_name

• Before the end statement there must be a return statement. At this
point control is returned to the main program.

• The function should be declared in any (sub)programs that use it.
Function bigroot returns a real answer, so it is declared as a real
function on line 3 of program fn1.

• The declaration statements in the function generally obey the same
rules that apply in a main program. (One exception relating to arrays is
discussed in the notes on subroutines, later in this document.)

• The function definition must include the type of the value returned by
the function, e.g. real, integer etc. This can be defined as above in a
declaration statement within the function:

real:: bigroot

or alternatively in the first line of the function definition:

real function bigroot(a,b,c)

• In order to ensure that a value is returned by the function there must be
at least one assignment statement in the function definition that assigns
a value to the function. In the example program fn1.f90 there are three
such assignments depending on the values of a, b and c: bigroot =
root1, bigroot = root2 and bigroot = -9.0e35.

• The variables listed in the argument list in the function definition are
called dummy variables. Their names do not have to match the names
used in parts of the program where the function is called. You can
confirm this in your example program by changing all occurrences of a,
b and c in the function to p, q and r and re-running the program.

• It is possible to change the value of a variable in the argument list by an
assignment statement within the function subprogram, but a well
designed function should never be allowed to modify any of the
arguments supplied.

• Apart from the variables passed as arguments, all of the variables
within the function are entirely local to the subprogram. This means that
identically named variables may exist in other programs and
subprograms but these are completely distinct and not related in any
way.

Exercise

Write a main program called factor.f90 which reads in an integer n from the
keyboard and then uses an integer function to calculate n! (the factorial of
n). The main program should display the result on the screen. Reminder: n!
= n*(n-1)*(n-2)*….*3*2*1.

Guide 138: An Introduction to programming in Fortran 90 41

13.2 Subroutines

You have seen above how functions may be used to calculate a single
value. In contrast, a subroutine is used when a more general computation
is required, possibly involving the return of several values of different types.
Alternatively, a subroutine may not return any values as such. It may
instead perform some other operation, such as displaying graphical results
on the screen.

The following example program uses a simple subroutine called solvit to
find both roots of a quadratic equation. The subroutine is invoked or 'called'
by the call statement in the main program:

call solvit(a,b,c,root1,root2,realroots)
It is common for the main program of a large programming project to
contain relatively few executable statements and a large number of calls to
subroutines, making it easier to understand the purpose and structure of
the program.

program subrout1
implicit none
real:: a,b,c,root1,root2
logical:: realroots
! demonstration of simple subroutine
write(*,10)
read(*,*) a,b,c
!
call solvit(a,b,c,root1,root2,realroots)
!
if (realroots) then
 write(*,20) root1,root2
 else
 write(*,*) 'Sorry, there are no real roots'
endif
!
10 format('Enter 3 coefficients')
20 format('The roots are',2f12.6)
stop
end
!
!subroutine solvit
!
subroutine solvit(a,b,c,root1,root2,realroots)
implicit none
real::a,b,c,root1,root2,test
logical::realroots
!
test=b**2 - 4*a*c
!
if(test>=0.0) then
 root1 = (-b + sqrt(test))/(2.0*a)
 root2 = (-b - sqrt(test))/(2.0*a)
 realroots = .true.
 else
 realroots = .false.
end if
!
return
end

42 Guide 138: An Introduction to programming in Fortran 90

Note the following rules for subroutines:

• When a subroutine is in the same file as the main program, it must
appear after the end of the main program.

• Each subroutine must begin with a line that defines it as a subroutine
and lists the arguments, e.g:

subroutine(orig,sorted,N)

• The subroutine definition must finish with an end statement. The
statement can take one of the following forms:

end
end subroutine
end subroutine subroutine_name

• Before the end statement there must be a return statement. At this
point control is returned to the main program.

• Because a subroutine may return several different types of value or no
value at all, it is not declared as having a specific type, e.g. real,
integer, either within the main program or the subroutine itself.

• The declaration statements within a subroutine obey the same rules
that apply to a main program, apart from the following exceptions for
arrays.
 Although you must explicitly declare the dimensions of any array that

is local to a subroutine, you do not need to give an explicit declaration
[e.g. real,dimension(100)::orig] of the dimensions of an array that is
passed to the routine as an argument. Instead, pass the dimensions
of the array in the argument list. (e.g, real,dimension(N)::orig is used
in the example above.) This assumed size declaration is the simplest
way to declare arrays in subprograms.

 If you use this method to pass a multi-dimensional array to a
subprogram, make sure you also pass the full dimensions of the
array (e.g. imax, jmax) and use these to declare the array in the
subprogram. If you wish to pass a section of an array to a
subprogram, pass it in the form array(i1:i2,j1:j2) and pass the
dimensions of this section as well. If you pass the whole array but
want to use only a section, pass the dimensions of this section
separately (e.g. ifill, jfill). This precaution is necessary because arrays
are in fact stored in 1-D format, so the subroutine needs to read the
first ifill, skip the unused elements up to imax, read the next ifill, skip
to 2*imax, and so on. If you did not give the full dimensions, the
subroutine would simply pick the first ifill*jfill elements in the 1-D list.
A carefully written subroutine that uses this way of passing an array
might look like this:

subroutine careful(arrayname,maxrow,maxcol,nrows,ncols)
real arrayname(maxrow, maxcol)
integer maxrow, maxcol, nrows, ncols
do i = 1,nrows
 do j = 1, ncols
 arrayname(i, j) = arrayname(i, j) + i * j
 end do
end do
end subroutine careful

Guide 138: An Introduction to programming in Fortran 90 43

A second way to deal with arrays in subprograms is to declare them as
assumed shape arrays. Like allocatable arrays, these are declared with
their dimensions but not their size, e.g:

real:: m1(:,:)

The subprogram will then know from the declaration statement that the
array has 2 dimensions, but the array is left free to assume the shape of
any array that is passed to it via the argument list. Assumed-shape arrays
are easier to use if the subprograms are in modules and an example is
given in section 14.

Subroutines and functions have some further features that you may find
useful when planning and writing a program:

It is permissible for a subroutine or function to invoke itself. This is called
recursion. A recursive subprogram must have the keyword recursive in its
first line, e.g:

recursive subroutine mysub(a,b,c)
real recursive function myfn(x,y,z)

The arguments to subprograms can be declared in the subprogram with an
intent. The intent of a variable in a subprogram can have one of three
values: in, out or inout, e.g:

subroutine mysub(a,b,c)
real,intent(in)::a
real,intent(inout)::b
integer,intent(out)::c

A variable with an intent of in is passed to the subprogram but cannot be
changed by it. One with an intent of out must be produced by the
subroutine. One with an intent of inout is passed to the subroutine and can
be changed by it. Use the intent attribute to help make sure that variables
cannot be changed accidentally in a subprogram.

Exercise

Earlier in this course you wrote a program called mat1.f90 to multiply two
matrices together. Using this as a basis, write a program called inverse.f90
that reads in the elements of a 2 by 2 real matrix and then uses a

subroutine to compute the inverse of the matrix. The inverse of matrix

is

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dc
ba

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
ac
bd

det
1

 where the determinant det is given by a*d - b*c.

Make sure that you check that the original matrix is not singular (i.e. ensure
that the determinant is not equal to zero before you compute the inverse).
Check the operation of your subroutine by multiplying the two matrices
together and displaying the result.

44 Guide 138: An Introduction to programming in Fortran 90

13.2.1 Generating random numbers

Fortran 90 has two built-in subroutines that provide a facility for generating
random numbers. The subroutines give programmers a portable way to
generate random numbers, although the precise implementation details do
depend on the compiler.

The actual random number is generated by a line

 call random_number(mynum)

which generates a single random number or an array of random numbers
(mynum in the example), drawn from a uniform distribution between 0.0
and 1.0.

The call to random_number is usually preceded by a line:

call random_seed(put=iseed)

 which initiates the random number generation with an integer "seed" array
(iseed in the example). The seed array often has only one element but
must still be declared as an array, e.g:

integer,dimension(1)::iseed

If random_seed is not called, or if the seed is not changed, the series of
random numbers will always be the same. This is useful for repeating
program runs.

Exercise

Write a program called ranguess.f90 which asks for a seed number,
generates a random number in the range 0 to 10 and then prompts you to
guess the value. The program should then tell you whether your guess is
too high or too low and ask for a new guess. The program should stop
when you get within a given margin (e.g. 0.2) of the actual random number.
In case you get fed up with guessing, the program should also stop if your
guess is negative.

Optional exercise (long)

If you have time, write a program called mysort.f90 which reads a number
N from the keyboard, checks that N is between 2 and 100, then calculates
N random numbers in the range 0.0 to 1.0 and stores them in an array
(remember that random_number(x) can generate an array x of numbers).
The program should then sort these numbers into descending order and
finally display the sorted numbers on the screen using an implied do-loop.
Use one subprogram to handle the input of N and another to sort the array
of random numbers.

(Hint: the sort can be done by searching through the array of N numbers
and noting which array element contains the largest number. Begin by
assuming that the first number in the array is the largest. When you have
found the largest number, swap it with the number in the first array element.
Next search through the array elements from 2 to N to find the second

Guide 138: An Introduction to programming in Fortran 90 45

largest number etc until only the smallest number remains in the N'th
element of the array. You will need a pair of nested do loops to do this.)

13.3 Storing subprograms in separate files

So far, your programs have always been in one file, which has included the
main program plus any functions and subroutines that are needed. When
you write larger programs, this can make the source code difficult to
navigate and to manage, so it is normal to keep subprograms in separate
files, even in separate directories. For example, if you completed the last
exercise, your final version of sortit.f90 should contain three parts: the
main program, a subroutine to read N and a subroutine to sort the random
numbers. These could have been stored in three files, e.g:

sortit_main.f90
readN.f90
sortarray.f90

You would need to compile all of these and link them together to make your
executable program. The simplest way to do this would be to list them in
the compilation command, e.g:

pgf90 -o sortit sortit_main.f90 readN.f90 sortarray.f90

This will work, but it will compile every component every time you use it,
even if you change only one subprogram. It would also be tedious to type in
the list for a program that involves many files. To speed up re-compilations
and to save typing, you can compile and link in two separate stages. In the
first stage, the source code is compiled to form object files, using the -c
option (compile only) to tell the compiler not to link the files.

pgf90 -c sortit_main.f90 readN.f90 sortarray.f90

This will give three object files whose names end in .o. To link them
together to form an executable, you would type:

pgf90 -o sortit sortit_main.o readN.o sortarray.o

If you now edited one of the files, you would need only to re-compile that
one, and then link the object files as above. This can make it much easier
to develop and test components of a program.

Compilation and linking of multiple files is managed most comprehensively
by a makefile. A makefile allows you to define all the components of a
program, the way that they depend on each other, and the compilation
options and environment that you want to use. When the make command
runs, it will use this information to identify and re-compile any parts of the
program that have been modified. Makefiles are extremely valuable for
large programming projects, for programs that are worked on by several
people, and for when you may come back to work on a program after a
long time. ITS Guide 176 gives an introduction to makefiles and the make
command.

46 Guide 138: An Introduction to programming in Fortran 90

13.4 Using subroutine libraries

So far in this course you have used subprograms that were intrinsic to
Fortran 90 or that you have written yourself. This section outlines some
ways in which you can make use of collections of subprograms, or libraries,
that have already been developed by other people to solve common
mathematical problems efficiently and robustly. Using these external
subprograms can save a lot of development effort and can help your
programs run faster and work more reliably.

When you compile and link a Fortran program, you link with a standard set
of subprogram libraries. You can also specify extra libraries to use by
including the -l option (letter l, not number 1) and the name of the library in
the pgf90 command, e.g.

pgf90 -o progname -llibraryname progname.f90

How does the compiler know where to find the libraries? Your UNIX account
has a number of settings called environment variables, including one called
LD_LIBRARY_PATH. To view your LD_LIBRARY_PATH, type:

echo $LD_LIBRARY_PATH

Each of the directories in this path contains libraries for various purposes. If
you have problems linking with a particular library or get errors at link-time
about undefined symbols, it may be that you need to include the option -l
libraryname in your compilation command, and/or you may need to include
the appropriate directory in your LD_LIBRARY_PATH.

Note: if you are working on the ITS Unix service (not the linux service), you
will need to add the Fortran 77 compatibility library to your compilation
command for any libraries that were compiled with F77, e.g:

f90 -o progname -lf77compat -llibraryname progname.f90

13.4.1 The NAG library

The Numerical Algorithms Group (NAG) subroutine library is widely used
because its large set of mathematical subprograms is well tested and
robust. The library is documented in a man page and in a large set of
manuals which are currently kept on the bookshelves in CM131. The library
is also documented in the NAG web pages – refer to local copies at
http://www.dur.ac.uk/its/local/nag/. An important point to remember is
that real variables used with the NAG library must be declared as double
precision.

Although the NAG library is extremely useful, it can be difficult from the
manuals to work out how you should use it. Once you have identified the
NAG routine that you want to use, it is often easier to use the nagexample
command to generate an example program for the routine in question.

For example, there are several random number generators in the NAG
library, described in chapter G05 of the manuals. One of the simpler
random number routines is called g05caf. To generate an example
program that calls this routine, type the following command. (Note that the

Guide 138: An Introduction to programming in Fortran 90 47

http://www.dur.ac.uk/its/local/nag/

name of the routine must be in lower case and the second character is a
zero, not the letter 'O').

nagexample g05caf

This will generate a small test program in your current directory, that you
can compile, link and run. The test program will be called g05cafe.f - the
name of the routine, plus an 'e' to show that this is an example program,
and .f instead of .f90 because the example is written in Fortran 77. Have a
look in this file to see how the routine g05caf is used. A simplified version
using f90-style syntax might look like this:

!G05CAF Example Program Text
! Mark 20 Revised. NAG Copyright 2001.
! .. Parameters ..
integer,parameter:: nout=6
! .. Local Scalars ..
double precision:: x
integer::i
! .. External Functions ..
double precision g05caf
!
! .. Executable Statements ..
write (nout,*) 'G05CAF Example Program Results'
write (nout,*)
call g05cbf(0)
do i = 1, 5
 x = g05caf(x)
 write (nout,99999) x
end do
stop
99999 format (1x,f10.4)
end

You should not find it difficult to translate between the two languages.

To re-compile the program, you will need to tell the compiler to link with the
NAG library. Do this by including the option -lnag . Also include -
g77libs because the NAG libraries were compiled with a different Fortran
compiler called g77, and -Mllalign to lay out double precision variables in
memory on their natural (8-byte) boundaries rather than the default 4-byte
boundaries.

pgf90 -o g05cafe -Mllalign –g77libs -lnag g05cafe.f

or, for Sun Unix users:

f90 -o g05cafe -dalign -lnag –lf77compat g05cafe.f

Note: you can use the compiler to compile F77 programs or a mixture of
F90 programs with F77 subroutines. The command will recognise a
program's language as Fortran 77 from the .f filename extension.

Note: NAG are developing a Fortran90 version of the NAG library and this
is available on the ITS Sun Unix service, though not the Linux service. It
does not yet have equivalents for all of the elements in the Fortran 77
library, but most are available. For more information on the NAG libraries
available in Durham, see:

48 Guide 138: An Introduction to programming in Fortran 90

http://www.dur.ac.uk/its/local/nag/

Exercise

The program g05cafe.f always generates the same series of numbers. This
behaviour is set by the call to g05cbf, which sets the seed for the random
number generator. To generate a different series each time you run the
program, replace the call to g05cbf with a call to g05ccf. Compile and run
the altered program. Check that it generates a new set of numbers each
time the program is run. You may find it easier if you change the program
into F90-style syntax or to read the comments on F77 syntax in section 15.

13.4.2 Other external libraries

Programs that involve solving intensive linear algebra problems or other
numerically intensive work may be substantially improved by use of the
online repository of mathematical software and reference papers at Netlib,

http://www.netlib.org/ or

http://www.mirror.ac.uk/sites/netlib.bell-labs.com/netlib/

You may download and use material from this web site. A subset of the
most popular libraries has been collected by Sun and made available for
Sun computers as the Sun Performance Library. For more information on
the Sun Performance Library and how to use it, visit

http://docs.sun.com/

and search for the Sun Performance Library User's Guide.

13.4.3 The 'Numerical Recipes' book

NAG is commercial software and requires a licence, so it is not suitable if
you need to share your program with a site that does not have the NAG
libraries. If you do need to do this and the Netlib routines do not solve your
problem, consult the Numerical Recipes book, available from the University
Library and the ITS Helpdesk. This book contains descriptions of ways to
handle numerical problems and also includes ready-written subprograms.
The routines in Numerical Recipes are supplied as source code, not in a
compiled library, so you can see exactly what they do and adapt them to
your own needs. They may not, however, be as thoroughly tested as the
NAG routines.

The Numerical Recipes book is also available on-line at
http://www.nr.com/. If you do not want to type in the routines, they can be
downloaded from this site but there is a charge.

Optional exercise

If you have time, write a program to:

• Generate N random numbers and write them to a file,
• Sort the numbers,

Guide 138: An Introduction to programming in Fortran 90 49

http://www.dur.ac.uk/its/local/nag/
http://www.netlib.org/
http://www.mirror.ac.uk/sites/netlib.bell-labs.com/netlib/
http://docs.sun.com
http://www.nr.com

• Calculate and display the mean of the numbers,
• Calculate and display the median,
• Write the mean and median to the end of the data file.

Use subprograms to structure your program and consider which steps
might have a solution in the NAG library or in Numerical Recipes.

14. Modules
Modules are a powerful concept in Fortran 90 and are particularly useful for
programming projects that are large or that involve several people. They
allow you to group subprograms and variables together and they give you
additional control over the way that variables are used. Some of the main
uses for modules are:

• To provide a central location for declarations of constants and variables
that are used in several parts of a program, so that the declarations need
not be repeated in numerous subprograms or passed in argument lists.

• To group a set of subprograms together.
• To define new types of variable and functions that work on these types.

(These 'derived types' of variable are not discussed in this course.)

The general form of a module is:

module modulename
 data definitions and declarations
 ...
contains
 module subprogram definitions
 ...
end module modulename

The following rules apply to modules:

• If a module is contained in the same file as the main program, it must
come before the main program.

• A module begins and ends with the lines:

module modulename
end module modulename

• Any program unit that makes use of the module's contents should
include the following statement immediately after the program name:

use modulename

• After this line, the variables and subprograms contained in
modulename can be used in the program unit. Notice that it is not
necessary to declare the module variables in the main program. The
use statement is sufficient.

• If the name of an item that is accessed from a module conflicts with
another name from elsewhere, the use statement can include an
instruction to use a different name locally. For example, if a module
variable is called modvar, it could be used with name newvar in another
program unit:

use modulename, newvar=>modvar

50 Guide 138: An Introduction to programming in Fortran 90

• If only certain items are needed from the module, these can be named
in the use statement too:

use modulename, only: var1, var2, …

14.1 Sharing variables and constants

Suppose that you have a program that uses numerous subroutines and
functions. Several of these program units use a common set of constants
and variables. There are two ways in which this set of items can be shared:

• the items could be declared in every subprogram that needs them and
the values could be passed between subprograms using argument lists,
or

• the items could be declared in a module and each subprogram that
needs them could declare that it will use the module.

The second method has the advantage that any changes can be done in a
single module instead of many subprograms, so there is much less risk of
error.

The example below shows a very simple module that defines the constants
� and e, and a program that uses the module.

module constants
 implicit none
 real,parameter:: pi=3.1415927, ee=2.7182818
end module constants
!
program useconst
use constants
implicit none
real::radius,area
radius = 10.5
area = pi * radius**2
write(*,*) area
end program useconst

Although this example shows a module that is in the same file as the
program that uses it, modules (and single subprograms) will typically be
stored and compiled separately and linked with one or more programs. One
advantage of this is that if you modify a small part of a large program, only
the modified part need be re-compiled.

Exercise

Type the module definition above into a file constmod.f90 and the main
program into a file const.f90. Compile the module with the command:

pgf90 -c constmod.f90

The -c option causes the file to be compiled but not linked; it will result in a
file constmod.o. You will also gain a .mod file for each module, so you will
have a file called constants.mod.

Now compile the main program with the command:

pgf90 -c const.f90

Guide 138: An Introduction to programming in Fortran 90 51

Finally, once the two parts have compiled successfully, link them together
with the command:

pgf90 -o const constmod.o const.o

Run the program const to check that it operates correctly.

What happens if you omit the line use constants from your main program
and re-compile?

Note: you can compile and link both files in a single command but this will
always recompile both parts:

pgf90 -o const constmod.f90 const.f90

The order of the arguments in this command is important: the module(s)
should come first.

14.2 Module subprograms

The next example shows a longer module simplestats that contains
functions to calculate the mean and standard deviation of a 1-dimensional
array. The module also contains two saved variables. These are variables
whose values are saved (i.e. remembered) between one call to a module
subprogram and the next call. In this example, the saved variables count
the number of times that each function is called. Saved variables are a
good way to share information between program units.

module simplestats
implicit none
integer,save::mean_times=0, stdev_times=0
!
contains
!
! function to calculate means
real function mean(vec)
 real,intent(in), dimension(:):: vec
 mean = sum(vec)/size(vec)
 mean_times = mean_times + 1
end function mean
!
! function to calculate standard deviations
real function stdev(vec)
 real,intent(in),dimension(:):: vec
 stdev = sqrt(sum((vec - mean(vec))**2)/size(vec))
 stdev_times = stdev_times + 1
end function stdev
!
end module simplestats
!
!!! main program starts here !!!
program usestats
use simplestats
implicit none
real, allocatable, dimension(:):: mydata
integer num, ist
! Input data

52 Guide 138: An Introduction to programming in Fortran 90

write(*,*) 'How many numbers are in the vector?'
read(*,*) num
! allocate array
allocate(mydata(num), stat=ist)
if (ist .ne. 0) then
 ! allocation failed
 write(*,*) 'Error allocating array!'
 else
 ! enter numbers and calculate stats
 write(*,*) 'OK, enter the numbers...'
 read(*,*) mydata
 write(*,*) 'The mean is ', mean(mydata)
 write(*,*) 'The standard deviation is ', stdev(mydata)
 deallocate(mydata)
end if
! usage stats from saved module variables.
write(*,*) 'Calculated ',mean_times, ' means and ', &
 stdev_times,' standard deviation.'
end program usestats

Notice that the functions in simplestats are internal to the module. They
come after the line:

contains

and before the end of the module. Internal functions and subroutines must end
with the statement end function or end subroutine, not just end.

Putting your subprograms into modules helps you avoid using the wrong
type of variable when you refer to a subprogram. Normally Fortran will allow
you to pass, for example, an integer variable to a subprogram that requires
a real number. The program will compile, but will probably not work
correctly and the error will be hard to find. If the subprogram is in a module,
however, the compiler will automatically construct an interface block to
describe how the module subprograms should be used, so that attempts to
pass the wrong type of variable in an argument list will be rejected.

Exercise

Modify your program constmod.f90 to include a module subprogram that
calculates the circumference of the circle.

As in the previous exercise, remove the line use constants and re-compile
to see what effect this error has.

15. About Fortran 77
You may come across many Fortran programs that were written in Fortran 77.
The aim of this section is to help you understand, use and perhaps update
them.

Fortran 90 includes the whole of Fortran 77. However, some language
features that were common in Fortran 77 should no longer be used. In

Guide 138: An Introduction to programming in Fortran 90 53

addition, you may find programs that use non-standard, machine-specific
extensions to the Fortran 77 language.

'Obsolescent' parts of the language which are permissible in Fortran 90 but
not in Fortran 95 include:

• real and double precision do-loop index variables
• shared do-loop termination
• branching to an end if from outside the if statement
• alternative return statements
• pause statements
• assign statements
• assigned goto statements
• assigned format statements
• arithmetic if statements
• H format (hollerith format)

'Undesirable' features are permissible in Fortran 90 and in Fortran 95, but
their functions can be performed in other ways. They include:

• "fixed form" syntax (see section) - use free form instead
• implicit declarations of variables - always use implicit none
• common blocks - use modules instead
• computed goto statements
• equivalence statements
• entry statements
• assumed size arrays - use assumed shape.

Try to remove obsolescent and undesirable features from old programs
wherever possible.

15.1 Fixed form syntax

Prior to Fortran 90, Fortran required a very specific syntax. Each line of an
old-style (usually Fortran 77) program was interpreted in the following
manner:

Lines in a Fortran 77 program could be up to 72 characters long. If a line
was longer than this, the characters beyond column 72 were ignored.

Columns 7 to 72 contained the body of the Fortran 77 statement. Any
blanks were ignored and could be inserted at will in order to improve the
layout of the statement.

Columns 1 - 6 were reserved for special purposes, described below:

• If column 1 contained the letter C, * or ! then the line consisted of a
comment statement.

• If a number from 1 to 99999 appeared anywhere in columns 1 to 5 then
the number was a statement label.

54 Guide 138: An Introduction to programming in Fortran 90

• Column 6 was normally empty but if a character (& for example) did
appear in this position then the line was a continuation of the previous
one.

Errors were commonly encountered in Fortran 77 as a result of failing to
comply with these rules.

15.2 Specific intrinsic functions

In Fortran 90, the same intrinsic function can be used for different types of
argument. For example, y = sin(x) would be valid for real x and y and for
double precision x and y. In Fortran 77 this was not the case: sin(x) would
be correct for real x and would give a real answer, but dsin(x) would
have been used for double precision x (and would give a double
precision answer). Similarly, there are intrinsic functions called dcos,
dasin, dsqrt, etc. In fact these are still used, but in Fortran 90 it is not
usually necessary to specify them in the source code.

15.3 Common blocks

Common blocks were a way of sharing information between program units
in a way that avoided lengthy lists of arguments. Instead of declaring each
argument in each subroutine call, the information was put into common
storage areas called common blocks. Although common blocks made it
much easier to develop large programs, they were a frequent cause of
problems and they can now be replaced by modules.

A common block is declared at the beginning of a program or subprogram,
after the declaration of variables and before any executable statements.
For example:

integer inum, jnum
real x, y, z, array1(10)
common inum, x, array1

The declaration of the common block began with the word common and
was followed by a list of variables. In the example above, the common
block contains an integer, a real number and a 10-element real array. Other
program units could refer to this common block by declaring it in the same
way, including the list of variables. The variables need not have the same
names in all of the program units, but they must be in the correct order and
have the correct types. It was possible to refer to a common block in as
many program units as needed.

Common blocks could be distinguished by being given names. In the
example above, the common block could have been given the name data1
by declaring it as:

common /data1/ inum, x, array1

Note the following rules that applied for common blocks:

• A program could use as many named common blocks as needed, but
the names had to be unique - they could not be the same as the names
of subprograms and they could not match the names of variables in any
subprogram that uses the common block.

Guide 138: An Introduction to programming in Fortran 90 55

• A variable could appear in only one common block.
• If a subprogram used a common block, none of the variables in the

common block could appear in the argument list for the subprogram.

15.4 'Include' files

A common and useful extension to Fortran 77 allowed the use of include
files. These could contain e.g. declarations of constants and common
blocks so that these declarations need not be repeated in numerous
subprograms. A program could make use of the include file with an
include statement, e.g:

include 'myincludefile'

which essentially inserted the text of the include file into the program. Like
common blocks, include files have been superseded by modules.

15.5 Standard F77 DO loops

The only form of do loop that was included in standard Fortran 77 is shown
in the following program fragment:

do 100 index=istart, iend, incr
 statement 1
 statement 2
 statement 3
 etc
100 continue

This do loop is contained between two statements: the do statement and a
continue statement. (In this example, the loop uses statement label 100,
but it could have another number.) All the statements down to and including
the line containing the statement label would be executed as in a do…end
do loop. The continue statement is a Fortran statement which can be
placed anywhere within a program but causes no action to be taken. It
simply marks the end of the loop in this example.

16. Further information
The following books on Fortran 90 are available from the University Library.
Those marked with an asterisk (*) are also available from the ITS Helpdesk:

Fortran 90/95 for scientists and engineers

by S.J. Chapman, published by McGraw-Hill (1998)

Fortran 90 programming

by T.M.R. Ellis, I.R. Philips and T.M. Lahey, published by Addison-
Wesley (1994)

Fortran 90/95 explained *

by M. Metcalf and J. Reid, published by Oxford University Press
(1999)

Fortran 90 and engineering computation

56 Guide 138: An Introduction to programming in Fortran 90

by W. Schick and G. Silverman, published by Wiley (1995)

Numerical Recipes in Fortran 90 *

by W. H. Press et al., published by Cambridge University Press
(1996)

The documentation for the Portland compilers can be found at:

http:www.dur.ac.uk/portland/

Extensive documentation on the Sun compilers is available at:

http://docs.sun.com/

A web-based course on Fortran 90, developed at the University of
Liverpool, is available on the ITS web pages at:

http://www.dur.ac.uk/its/local/fortran90/HTMLF90CourseSlides.html

For a summary of new features in Fortran 95 see:
http://www.kcl.ac.uk/kis/support/cit/fortran/f90home.html#1.2

Guide 138: An Introduction to programming in Fortran 90 57

http://www.dur.ac.uk/portland/
http://www.kcl.ac.uk/kis/support/cit/fortran/f90home.html#1.2.
http://docs.sun.com
http://www.dur.ac.uk/its/local/fortran90/HTMLF90CourseSlides.html

	1. Introduction
	2. Programming basics
	2.1 The main parts of a Fortran 90 program
	2.2 The layout of Fortran 90 statements
	3. Data types
	3.1 Constants
	3.1.1 Integers
	3.1.2 Reals
	3.1.3 Double Precision
	3.1.4 Character
	3.1.5 Logical
	3.1.6 Complex

	3.2 Variables

	4. How to write, process and run a program
	4.1 Writing the program
	4.2 Compilation and linking
	4.3 Running the program
	4.4 Removing old files

	5. Converting between types of variable
	6. The hierarchy of operations in Fortran
	7. About input and output
	7.1 Redirection of input/output
	7.2 Formatting input and output
	7.3 E format and D format

	8. More intrinsic functions
	9. Arrays
	9.1 Whole array elemental operations
	9.2 Whole array operations
	9.3 Working with subsections of arrays
	9.3.1 Selecting individual array elements
	9.3.2 Selecting array sections
	9.3.3 Using masks

	9.4 Allocatable arrays

	10. Parameters and initial values
	11. Program control: DO loops and IF statements
	11.1 DO... END DO loops
	11.2 IF statements
	11.2.1 More about the where statement

	11.3 CASE statements
	11.4 Controlling DO loops with logical expressions
	11.4.1 Conditional exit loops
	11.4.2 Conditional cycle loops
	11.4.3 DO WHILE loops

	11.5 Named DO loops and IF statements
	11.6 Implied DO loops

	12. Hints on debugging programs
	13. Subprograms
	13.1 Functions
	13.2 Subroutines
	13.2.1 Generating random numbers

	13.3 Storing subprograms in separate files
	13.4 Using subroutine libraries
	13.4.1 The NAG library
	13.4.2 Other external libraries
	13.4.3 The 'Numerical Recipes' book

	14. Modules
	14.1 Sharing variables and constants
	14.2 Module subprograms

	15. About Fortran 77
	15.1 Fixed form syntax
	15.2 Specific intrinsic functions
	15.3 Common blocks
	15.4 'Include' files
	15.5 Standard F77 DO loops

	16. Further information

