Cloud System Modeling

Steven K. Krueger

Department of Meteorology, University of Utah, Salt Lake City, Utah

- I. Introduction
- II. Interactions between Radiation and Convection in Tropical Cloud Clusters
- III. Thin Midlevel Stratiform (Altocumulus) Clouds
- IV. Stratocumulus-to-Trade Cumulus Transition in the Subtropical Marine Boundary Layer

- V. Enhancement of Surface Fluxes by Tropical Convection
- VI. Plumes Generated by Arctic Leads
- **VII.** Conclusions

References

Figure 1 The scales of motion that are explicitly represented by various numerical models of the atmosphere.

CRMs and GCMs: A Scale Comparison

Aspect	CRM	GCM	
Eddies	Cumulus clouds	Baroclinic eddies	
Eddy time scale	3×10^3 sec	3×10^5 sec	
Forcing time scale	3–4 days	365 days	
Domain size	400 km	40,000 km	
Horizontal grid size	2 km	200 km	
Time step	10 sec	10^3 sec	
Time step	10 sec	10^3 sec	

	1-D Turbulence closure	2D CRM/ERM	3D LES
Explicitly represented circulations	None	Mesoscale and large convective eddies	Large turbulent eddies
Parameterized circulations	Clouds and turbulence	3-D turbulence	Small turbulent eddies
Cloud-regime-specific input required	Turbulent length scale Condensation scheme	None	None
Vertical domain	3 km	3 km	3 km
Horizontal domain	(none)	5 km	5×5 km
Grid size	50 m	$50 \times 50 \text{ m}$	$50 \times 50 \times 50$ m

Comparison of Convective Boundary Layer Models

II. INTERACTIONS BETWEEN RADIATION AND CONVECTION IN TROPICAL CLOUD CLUSTERS

R1: No radiative cooling

R2: clear-sky radiative cooling

R3: fully interactive radiative cooling

R3: fully interactive radiative cooling

Distance (km)

Figure 4 Time series of the surface precipitation rate for the three simulations.

III. THIN MIDLEVEL STRATIFORM (ALTOCUMULUS) CLOUDS

Figure 7 The liquid water mixing ratio field for the altocumulus cloud layer simulation at 2 hr.

Figure 8 The vertical velocity field for the altocumulus cloud layer simulation at 2 hr.

Figure 1: Liquid water mixing ratio (left, g/kg) and radiative heating rate (right, K/h) for a diurnal cycle of altocumulus.

Figure 11 The profiles of the 6-hr-averaged updraft and downdraft vertical velocities for the altocumulus cloud layer simulation.

VI. PLUMES GENERATED BY ARCTIC LEADS

Lead and associated plume. Photo taken on BASE flight 16, October 12, 1994, over the Beaufort Sea.

Case	Domain size (m)	Lead width (m)	Geostrophic wind angle (deg)	$(F_{\rm s})_{\rm lead}$ (W m ⁻²)	$(LF_q)_{lead}$ (W m ⁻²)	Plume height (m)
A	768	200	0	244	73	190
В	768	200	15	246	75	115
С	2304	200	90	243	72	65
D	768	400	0	264	80	270

Simulations of Arctic Leads

.

Figure 16 Mean total turbulent kinetic energy $(m^2 s^{-2})$ for cases A (top), B (middle), and C (bottom).