The Convective Mass Flux Model

$$
\begin{aligned}
& \sigma: \text { updraft fraction } \\
& \bar{\psi}=\sigma \psi_{u}+(1-\sigma) \psi_{d}
\end{aligned}
$$

The convective flux F_{ψ} is

$$
F_{\psi}=\overline{\rho w^{\prime} \psi^{\prime}}=M_{c}\left(\psi_{u}-\psi_{d}\right)
$$

where

$$
\begin{aligned}
M_{c} & \equiv \rho \sigma(1-\sigma)\left(w_{u}-w_{d}\right) \\
& =\rho \sigma\left(w_{u}-\bar{w}\right) \\
& \approx \rho \sigma w_{u}
\end{aligned}
$$

Schubert et al. 1979

Meteorology 6150: Exercise 9
 Shallow-layer Convection: Mass Flux Model for Convective Fluxes
 Due December 5, 2000

This exercise is based on the three non-linear simulations that you performed for Exercise 7. Do all calculations at the w-levels. For potential temperature, you will need to average vertically to obtain values at the w levels.

1. Calculate and plot the profile of the steady-state average updraft speed w_{u} for each case.
2. Calculate and plot the profile of the steady-state average updraft fractional area σ for each case.
3. Calculate and plot the profile of the steady-state average updraft potential temperature θ_{u}, downdraft potential temperature θ_{d}, and their difference $\theta_{u}-\theta_{d}$, for each case.
4. Plot the updraft mass flux profile $M_{u}=\sigma w_{u}$ for each case.
5. Estimate the convective heat flux profile $\overline{w^{\prime} \theta^{\prime}}$ using $M_{u}\left(\theta_{u}-\theta_{d}\right)$ for each case. Compare to the actual convective heat flux profiles that you obtained in Exercise 7, part 3.

$$
\text { At } \begin{aligned}
Z=\frac{H}{2} \frac{W_{1}(Z)}{} & =A_{1} \sin (1 \cdot \pi \cdot 0.5) \\
& =A_{1} \sin (\pi / 2)
\end{aligned}
$$

$$
W_{1}=A_{1}
$$

So $w(y, 0.5)=w_{1} \cos (k<y)=A_{1} \cos (k, y)$

$$
\begin{aligned}
k_{c} & =\frac{\pi}{\sqrt{2}}, \quad 2=2 \sqrt{2} \\
g \frac{\theta^{\prime}}{\theta_{0}} \equiv B & =\frac{\nu}{k_{c}^{2}}\left(\frac{d^{2}}{d^{2}}-k_{c}^{2}\right)^{2} w_{1} \cos (k=y) \\
& =\frac{\nu}{k_{c}^{2}}\left(k_{c}^{2}\right)^{7} w_{1} \cos (k<y) \\
& =\nu k_{c}^{2} A_{1} \cos (k c y) \equiv B_{1} \cos \left(k_{c} y\right)
\end{aligned}
$$

$$
k_{c} y=2 \pi \text { when }
$$

$$
y=\frac{2 \pi}{k c}
$$

$$
=\frac{2 \pi}{\pi / \sqrt{2}}
$$

$$
y=2 \sqrt{2}
$$

$$
\begin{aligned}
& \left.\theta-\bar{\theta})=\overline{w \theta}-\bar{w} \bar{\theta}=\frac{w \theta}{w} ; \bar{w}=0\right) \\
& =\frac{1}{2} \int_{0}^{2} A_{1} B_{1} \cos ^{2}\left(k_{c} y\right) d y \\
& =\frac{1}{2 L} \int_{0}^{2} A_{1} B_{1}\left(\cos ^{2}\left(k_{c} y\right)+\sin ^{2}\left(k_{c} y\right)\right) d y \\
& =\frac{1}{2 L} \int_{0}^{2} A_{1} B_{1} d y=\frac{A_{1} B_{1}}{2} .
\end{aligned}
$$

mans flux model: $\overline{w^{-1} \theta^{\prime}}=\sigma\left(\overline{w^{\prime} \theta^{\prime}}\right)_{h}+(1-\theta)\left(\overline{w^{\prime} \theta^{\prime}}\right)_{d}$

$$
\begin{aligned}
\left(\overline{w^{\prime} \theta^{\prime}}\right) & =w_{u}\left(\theta_{u}-\bar{\theta}\right), \overline{w^{\prime} \theta_{d}}=w_{d}\left(\theta_{d}-\bar{\theta}\right), \text { sD } \\
w^{\prime} \theta^{\prime} & =\sigma w_{u} \theta_{u}-\sigma w_{u} \bar{\theta}+(1-\sigma) w_{d} \theta_{d}-(1-\sigma) w_{d} \bar{\theta} \\
& =\sigma w_{u} \theta_{u}+(1-\sigma) w_{d} \theta_{d}-\bar{\theta}\left[\sigma w_{u}+(1-\sigma) w_{d}\right] . \\
w_{u}=\frac{1}{L^{2}} \int_{0}^{L / 2} A_{1} \sin \left(k_{c} y\right) d y & =\left.\frac{2}{2} A_{1}\left(-\frac{1}{k_{c}} \cos \left(k_{c} y\right)\right)\right|_{0} ^{L / 2} \quad k_{c} L / 2= \\
& =\frac{2}{2} A_{1}\left(-\frac{\pi}{\sqrt{2}}\right)^{-2}[-1-1]=\frac{2 \sqrt{2}}{2}=\pi \\
w_{u} & =A_{1} \frac{2}{\sqrt{2}} \frac{2}{2 \sqrt{2}}=A_{1} \frac{2}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& w_{d}=-w_{u} \\
& \theta_{u}=B_{1} \pi \\
& \theta_{d}=-\theta_{u} \\
& \frac{w^{\prime} \theta^{\prime}}{}=\sigma w_{u} \theta_{u}+(1-\sigma) w_{d} \theta_{d} \\
&=\sigma w_{u} \theta_{u}+(1-\sigma) w_{u} \theta_{u} \\
&=w_{u} \theta_{u} \frac{2}{\pi} \\
&=A_{1} \frac{2}{\pi} B_{1} \pi \\
& \frac{w^{2} \theta^{\prime}}{1}=A_{1} B_{1} \frac{4}{\pi^{2}} \\
& \frac{1}{\pi} \int_{0}^{\pi} \sin \theta d y=\frac{1}{\pi} \int_{0}^{\pi} d(-\cos \theta)=\left.\frac{1}{\pi}(-\cos \theta)\right|_{0} ^{\pi} \\
& \text { Ratio of mas } f \ln x \operatorname{model} \quad
\end{aligned}
$$ to true flux: (at $z=H / 2$)

$$
\frac{A_{1} B, 4 / \pi^{2}}{A_{1} B_{1} / 2}=\frac{8}{\pi^{2}}=0.81
$$

