Mountain Waves and
Downslope Windstorms
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Figure 12.3 Streamlines in steady flow over an infi-
nite series of sinusoidal ridges (a) for the case where
N? > ugk* and (b) for the case where N* < ujk*. The
dashed line in (a) shows the phase of maximum upward
displacement, which tilts westward with height. (Adapted
from Durran [1990].)






Boundary Conditions

® Surface: Topography
® Jop: Transport energy out of domain

® [ateral: Transport energy out of domain



Surface Boundary Conditions

® Rigid and free-slip
® Jopography:
® Terrain-following coordinate system

® |mmersed boundary method
dz.
dx

® Linearized: w(x,0) = v(x,0)



Top Boundary Conditions

The radiation boundary condition, which
requires energy transport out of the
domain, is approximated.

This condition is essential for successful
simulation of vertically propagating
mountain waves.

This b.c. is approximated by adding an
absorbing layer to the top of the domain.

Waves entering this layer from below have
negligible amplitude when they reach the
top of the domain.



Lateral Boundary Conditions

® The lateral b.c.are also designed to radiate
energy out of the domain.

® The goal is to minimize spurious reflection
of outward propagating waves at the lateral
boundary.

® The phase speed c of a gravity wave
impinging on the boundary is estimated.

® The horizontal velocity u is advected
outwards at the boundary with speed u + c.



Lateral Boundary Conditions

® For other variables at the outflow
boundary, centered differences are replace
by upstream differences.

® At the inflow boundary, the horizontal
gradients are set to zero.



Numerical Smoothing

® A small amount of numerical smoothing us
applied to all fields except the Exner
function to control growth of non-linear

instability and remove short wavelength
modes.



Testing the Model

Linear hydrostatic waves in an isothermal

atmosphere
ha?
r? + a?

a = 10 km, h = height of mountain

Mountain contour: zs(x) =

Use linearized b.c. for w(x,0).

Analytic solution exists.
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ABSTRACT

A two-dimensional, nonlinear, nonhydrostatic model is described which allows the calculation of moist
airflow in mountainous terrain. The model is compressible, uses a terrain-following coordinate system, and
employs lateral and upper boundary conditions which minimize wave reflections.

The model’s accuracy and sensitivity are examined. These tests suggest that in numerical simulations of
vertically propagating, highly nonlinear mountain waves, a wave absorbing layer does not accurately mimic
the effects of wave breakdown and dissipation at high levels in the atmosphere. In order to obtain a correct
simulation, the region in which the waves are physically absorbed must generally be included in the computational
domain (a nonreflective upper boundary condition should be used as well).

The utility of the model is demonstrated in two examples (linear waves in a uniform atmosphere and the
11 January 1972 Boulder windstorm) which illustrate how the presence of moisture can influence propagating
waves. In both cases, the addition of moisture to the upstream flow greatly reduces the wave response.
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FiG. 1. (a) Steady state perturbation horizontal velocity (m s™')
from the linear hydrostatic solution for a 1000 m high mountain.
(b) Perturbation horizontal velocity (m s™') obtained by numerical
simulation for a 1 m high mountain at #t/a = 60; the perturbations
have been amplified by 1000.
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F1G. 2. As in Fig. 1, except that the fields plotted

are vertical velocity (m s™V).
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Figure 12.9 Analysis of potential temperatures (blue contours; K) from aircraft flight data (aircraft flight tracks are
indicated with dashed lines) and rawinsondes on 11 January 1972 during a downslope windstorm near Boulder, CO. The
heavy dashed line separates data taken by the Queen Air at lower levels before 2200 UTC from that taken by the Sabreliner
aircraft in the middle and upper troposphere after 0000 GMT (12 January). The aircraft flight tracks were made along an
approximate 130 -310 azimuth, but the distances shown are along the east-west projection of these tracks. (Adapted

from Lilly [1978].)
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Figure 12.13 Schematic of the idealized high-wind-
speed flow configuration, derived from aircraft obser-
vations and numerical simulations. A certain critical
streamline divides and encompasses a region of uni-
form potential temperature. Hy is the original height of
the dividing streamline, 6. is the potential temperature
in the well-mixed region between the split streamlines,
5 1s the displacement of an arbitrary streamline, 8. 1s
the displacement of the dividing streamline, and H; is
the nadir of the lower dividing streamline. (From Smith
[1985].)



Figure 12.14 Isentropes for the airflow in a two-layer atmosphere when the interface is fixed at 3000 m, and the
mountain height is (a) 200, (b) 300, (c) 500, and (d) 800 m. (From Durran [1986b].)



Figure 12.15 Isentropes for the airflow in a two-layer atmosphere when the mountain height is fixed at 500 m, and the
interface is at (a) 1000 m, (b) 2500 m, (c) 3500 m, and (d) 4000 m. (From Durran [1986b].)



Putting all of this together, here are some of the condi-
tions that forecasters look for when predicting downslope
windstorms:

e an asymmetric mountain with a gentle windward slope
and a steep lee slope

e strong cross-mountain geostrophic winds (>15m s !)
at and just above mountain-top level associated with
surface high pressure upstream and surface low pressure
downstream

e an angle between the cross-mountain flow and the ridge
that is greater than ~60°

e a stable layer near or just above the mountain top, and a
layer of lesser stability above



e a level that exhibits a wind direction reversal or where
the cross-barrier flow simply goes to zero (the mean state
critical level); the existence of weak, vertical wind shear
or reverse shear 1s more favorable than forward shear

e situations of cold advection and anticyclonic vorticity
advection, which promote downward synoptic motion
to generate and reinforce the vertical stability structure

e absence of a deep, cold, stable layer in the lee of
mountains, which may keep the downslope flow from
penetrating to the surface.



