QCOM 2D Convection

$$
\frac{\partial v}{\partial t}=-v \frac{\partial v}{\partial y}-w \frac{\partial v}{\partial z}-c_{p} \theta_{0} \frac{\partial \pi_{1}}{\partial y}+D_{v}
$$

$$
\begin{gathered}
\frac{\partial w}{\partial t}=-v \frac{\partial w}{\partial y}-w \frac{\partial w}{\partial z}-c_{p} \theta_{0} \frac{\partial \pi_{1}}{\partial z}+g\left(\frac{\theta}{\theta_{0}}-1\right)+D_{w}, \\
\frac{\partial \theta}{\partial t}=-v \frac{\partial \theta}{\partial y}-w \frac{\partial \theta}{\partial z}+D_{\theta}, \\
\frac{\partial \pi_{1}}{\partial t}=-\frac{c_{s}^{2}}{c_{p} \theta_{0}^{2}}\left[\frac{\partial}{\partial y}\left(\theta_{0} v\right)+\frac{\partial}{\partial z}\left(\theta_{0} w\right)\right] .
\end{gathered}
$$

The right-hand sides of (1)-(4) will be denoted f_{v}, f_{w}, f_{θ}, and f_{π}. Their centered, second-order accurate finite-difference forms are

$$
\begin{gather*}
f_{v}=-v \delta_{2 y} v-\bar{w}^{y} \delta_{z} v^{z}-c_{p} \theta_{0} \delta_{y} \pi_{1}+D_{v}, \tag{6}\\
f_{w}=-\overline{\bar{v}}^{z} \delta_{y} w^{y}-w \delta_{2 z} w-c_{p}{\overline{\theta_{0}}}^{z} \delta_{z} \pi_{1}+g\left(\frac{\bar{\theta}^{z}}{{\overline{\theta_{0}}}^{z}}-1\right)+D_{w}, \tag{7}\\
f_{\theta}=-\overline{v \delta_{y} \theta^{y}}-\overline{w \delta_{z} \theta^{z}}+D_{\theta}, \tag{8}\\
f_{\pi}=-\frac{c_{s}^{2}}{c_{p} \theta_{0}^{2}}\left[\delta_{y}\left(\theta_{0} v\right)+\delta_{z}\left(\bar{\theta}_{0}^{z} w\right)\right] . \tag{9}
\end{gather*}
$$

Each of (1)-(4) can be written as

$$
\frac{\partial \phi}{\partial t}=f_{\phi},
$$

4 Turbulence closure

For simplicity, we will use the eddy viscosity approach. Then terms D_{v}, D_{w}, and D_{θ} each have the form

$$
K_{\phi} \nabla^{2} \phi
$$

or, in finite-difference form,

$$
K_{\phi}\left[\delta_{y}\left(\delta_{y} \phi\right)+\delta_{z}\left(\delta_{z} \phi\right)\right]
$$

where K_{ϕ} is the eddy diffusivity.

Array subscripting convention

Analytic Solution to the Linear Convection Equations

Normalized Perturbation Potential Temperture

