
Atmospheric Sciences 6150
A Numerical Model for Simulating Convection

1 The model equations

You will develop a numerical model and use it to simulate a convective flow. The

model is based on the quasi-compressible outflow model (QCOM) described in Droege-

meier and Wilhelmson (1987). The model predicts the horizontal velocity (v), the

vertical velocity (w), the potential temperature (θ), and the non-dimensional pertur-

bation pressure (π1). The compressible, non-rotating, adiabatic equations in Carte-

sian coordinates (y, z) are:
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See Klemp and Wilhelmson (1978) for a derivation of (4). In our version, we neglect

the height variation of the density. In the equations above, π = (p/pr)
R/cp , where

pr = 1000 mb, R is the gas constant for dry air, and cp is the specific heat capacity

at constant pressure for dry air, and cs is the constant speed of sound. The terms

Dv, Dw, and Dθ represent turbulent mixing. Variables with a subscript 0 refer to

the basic state, which varies with height only. A subscript 1 indicates the departure

from the basic state. The basic state is in hydrostatic balance:
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2 Quasi-compressibility approximation

The quasi-compressibility approximation involves artificially slowing down the sound

wave modes so that a larger time step may be used. For large cs, the solution of

the equations approaches that of the anelastic system. For small cs (near the speed
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of the fastest non-acoustic signal in the simulation), incorrect results occur due to
artificially strong coupling between gravity wave and acoustic modes. Droegemeier
and Wilhelmson found that for cs > 50 m/s, elastic energy is much less than than
the kinetic energy, and solutions are essentially independent of cs.

3 Finite-difference equations

The grid is staggered, with π and θ located at the central point of the stencil, w
one-half grid interval above and below the central point, and v one-half grid interval
to the left and right of the central point. We will use the operator notation:
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where φ denotes a dependent variable, ξ is the independent variable, ∆ξ is a grid
interval, and n∆ξ is the interval over which the opertion takes place.

The right-hand sides of (1)-(4) will be denoted fv, fw, fθ, and fπ. Their centered,
second-order accurate finite-difference forms are
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Each of (1)-(4) can be written as
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which can be approximated with the second-order Adams-Bashforth scheme as
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Here ∆t is the time step, and the superscripts indicate the time levels. Because the

Adams-Bashforth scheme is a two-level scheme, it cannot be used for the first time

step of a simulation. Instead, the forward scheme may be used:

φn+1 − φn

∆t
= f

n
φ .

The time step is based on the CFL criterion for linear sound waves:

∆t <
(∆y∆z)

1/2

cs
.

For example, if ∆y = ∆z = 100 m and cs = 100 m/s, then ∆t < 1 s for stability.

Due to other aspects of the finite-difference scheme, the ∆t that is actually used is

usually smaller by a factor of 1/2 to 1/4.

4 Turbulence closure

For simplicity, we will use the eddy viscosity approach. Then terms Dv, Dw, and Dθ

each have the form

Kφ∇2φ,

or, in finite-difference form,

Kφ[δy(δyφ) + δz(δzφ)],

where Kφ is the eddy diffusivity.

5 Boundary conditions

The lower and upper boundaries (at z = 0 and z = H) are both rigid (i.e., w = 0),

either free-slip (∂v/∂z = 0) or no-slip (v = 0) and either non-conducting (insulating,

∂θ/∂z = 0) or conducting (θ = θ0). The lateral boundary conditions (at y = 0 and

y = L) are cyclic (periodic, φ(y + L, z) = φ(y, z)).

We can implement these boundary conditions in a way that allows the same code

to be used for the grid points adjacent to the boundaries as is used by the remainder

of the grid points. We do this by adding an extra level of grid points a distance ∆z/2

below the lower boundary and another extra level a distance ∆z/2 above the upper

boundary, and by adding an extra column of grid points a distance ∆y/2 to the left
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