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1 Fundamental Equations

1.1 The Basic Equations

1.1.1 Equation of motion

The movement of air in the atmosphere is governed by Newton’s Second
Law:

Dv

Dt
= −2Ω× v − 1

ρ
∇p + g + F, (1.1)

where t is time, Ω is the angular velocity of the earth’s rotation, v is
the air velocity, ρ is density, p is pressure, ∇ is the gradient operator,
and D/Dt is the total derivative:

D

Dt
≡ ∂

∂t
+ v · ∇.

The terms on the right-hand side of (1.1) are the forces that affect the
motion of air: Coriolis, pressure gradient, gravity (centrifugal force
plus gravitation), and frictional. Note that g = −gk.

1.1.2 Equation of state

The equation of state for an ideal gas is

p = ρRdT, (1.2)
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where Rd is the gas constant for dry air and T is the (absolute) tem-
perature. For a mixture of dry air and water vapor, (1.2) becomes

p = ρRdTv, (1.3)

where Tv is the virtual temperature:

Tv ≈ T (1 + 0.61qv), (1.4)

and qv is the mixing ratio of water vapor.

1.1.3 Thermodynamic equation

The First Law of Thermodynamics describes the conservation of en-
ergy:

Ḣ = cv
DT

Dt
+ p

Dα

Dt
, (1.5)

where Ḣ is the heating rate, cv is the specific heat capacity of dry air
at constant volume, and α = 1/ρ is the specific volume. Use (1.2) to
write (1.5) as

Ḣ = cp
DT

Dt
− α

Dp

Dt
, (1.6)

where cp is the specific heat capacity of dry air at constant pressure.
It is often more useful to write the First Law in terms of potential

temperature,

θ ≡ T

Π
,

where Π, called the Exner function, is defined as

Π ≡
(

p

pr

)Rd/cp

, (1.7)

and pr = 1000 hPa. In terms of θ, (1.6) becomes

Dθ

Dt
=

Ḣ

cpΠ
. (1.8)
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In cloud dynamics, Ḣ includes heating and cooling due to phase changes
of water, absorption or emission of radiation, and molecular diffusion.
In the absence of heating or cooling, (1.8) reduces to the adiabatic
form,

Dθ

Dt
= 0.

For cloud dynamics, this form is generally not useful. When the
heating or cooling is due only to condensation or evaporation, Ḣ =
−L Dqv/Dt, where L is the latent heat of vaporization, and (1.8) be-
comes

Dθ

Dt
= − L

cpΠ

Dqv

Dt
. (1.9)

1.1.4 Mass conservation equation

The continuity equation describes the conservation of air mass:

Dρ

Dt
= −ρ∇ · v. (1.10)

1.1.5 Water conservation equations

Conservation of the mass of water per unit mass of air is described by
a set of equations:

Dqi

Dt
= Si, for i = 1, . . . , n, (1.11)

where qi is the mixing ratio of the ith water species and Si is the net
source for that species.

1.2 Scale Analysis

1.2.1 Equation of motion and buoyancy

If we decompose p and ρ into a hydrostatic basic state, p0(z) and ρ0(z),
and deviations from this state, p

′
and ρ

′
, and apply scale analysis based
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on observations that indicate that p
′
/p0 � 1 and ρ

′
/ρ0 � 1, we obtain

−1

ρ
∇p + g ≈ − 1

ρ0
∇p

′
+ g

ρ
′

ρ0
, (1.12)

where gρ
′
/ρ0 is the buoyancy acceleration. In addition, for cloud-scale

motions, the Coriolis and frictional accelerations can be neglected.
Then (1.1) becomes

Dv

Dt
= − 1

ρ0
∇p

′
+ g

ρ
′

ρ0
. (1.13)

Based on observations, p
′
/p0 � 1, ρ

′
/ρ0 � 1, and T

′
/T0 � 1, so

the equation of state for dry air (1.2) for the deviations can be written
as

ρ
′

ρ0
≈ p

′

p0
− T

′

T0
, (1.14)

or, using potential temperature instead of temperature, as

ρ
′

ρ0
≈ cv

cp

p
′

p0
− θ

′

θ0
. (1.15)

Eqs. (1.14) and (1.15) allow the buoyancy to be expressed in terms
of pressure and temperature or potential temperature deviations. It is
shown in section 1.2.4) that the contributions of pressure deviations to
buoyancy may be neglected if

U 2

c2 �
T

′

T0
,

where U is a typical velocity variation and

c ≡ (
cv

cp
RdT )1/2 (1.16)

is the speed of sound. Then (1.14) and (1.15) become

ρ
′

ρ0
≈ −T

′

T0
, (1.17)
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and
ρ

′

ρ0
≈ − θ

′

θ0
. (1.18)

One may use the Exner function, (1.7), to write

−1

ρ
∇p = −cpθ∇π.

If we decompose π and θ into a hydrostatic basic state, π0(z) and θ0(z),
and deviations from this state, π

′
and θ

′
, and apply scale analysis, we

obtain

−cpθ∇π + g ≈ −cpθ0∇π
′ − g

θ
′

θ0
, (1.19)

where −gθ
′
/θ0 is the buoyancy acceleration. In this form, the pressure

deviation does not appear in the buoyancy acceleration. For cloud-
scale motions, (1.1) becomes

Dv

Dt
= −cpθ0∇π

′ − g
θ

′

θ0
. (1.20)

1.2.2 Compressible equations

The following prognostic equation for the non-dimensional pressure
deviation, π

′
, can be derived:

∂π
′

∂t
= − c2

o

cpρ0θ2
o

∇ · (ρ0θ0v) + fπ, (1.21)

where fπ consists of several small terms and can be neglected.

1.2.3 Anelastic and Boussinesq approximations

For cloud-scale motions, the mass conservation equation (1.10) can be
approximated to a high degree of accuracy as

∇ · (ρov) = 0 (1.22)
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and the horizontal pressure gradient acceleration as

− 1

ρ0
∇Hp

′ ≈ −∇H
p

′

ρ0
. (1.23)

These expressions retain the variation of (basic state) density with
height.

When the air motions are limited to a shallow layer, the density is
approximately constant. Then ρ0 can be replaced by a constant value
in (1.22) and (1.23). The former becomes

∇ · v = 0. (1.24)

1.2.4 Pressure and temperature fluctuations

Equation (1.14) relates the fluctuations of density, pressure, and tem-
perature:

ρ
′

ρ0
≈ p

′

p0
− T

′

T0
. (1.25)

We now compare the magnitudes of the two terms on the right of
(1.25). To do this, consider the magnitude of the horizontal pressure
gradient that can be maintained within a “bubble” of gas character-
ized by pressure and temperature fluctuations p

′
and T

′
. Using the

momentum equation (1.13) in the x direction,

∂u

∂t
+ v · ∇u = − 1

ρ0

∂p
′

∂x
,

we suppose that all terms on the left have similar magnitudes. If the
bubble has a velocity scale U , then the order of magnitude of the
pressure gradient acceleration is

− 1

ρ0

∂p
′

∂x
∼ U

∂U

∂x
.



1 FUNDAMENTAL EQUATIONS 7

Because ρ0 depends only on z, we may write this as

− ∂

∂x

 p
′

ρ0

 ∼ 1

2

∂

∂x
U 2.

After integrating this, we can relate p
′
to U :

p
′

ρ0
∼ U 2.

Using the equation of state for dry air (1.2) applied to the hydrostatic
base state, p0 = ρ0RdT0, we find that

p
′

p0
∼ U 2

RdT0
=

cp

cv

U 2

c2 , (1.26)

where c is the speed of sound given by (1.16). Using (1.26) in (1.25),
we see that the contribution of pressure fluctuations to density fluctu-
ations, and therefore to buoyancy, may be neglected if

U 2

c2 �
T

′

T0
.


