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dv

dt
+ u2 tan φ

a
+ vw

a
= − 1

ρ

∂p

∂y
− 2$u sin φ + Fv

(2.52)

dw

dt
− u2 + v2

a
= − 1

ρ

∂p

∂z
+ 2$u cos φ − g + Fw. (2.53)

We will assume that the vertical component of the Cori-
olis acceleration can be neglected, as can the −2$w cos φ

contribution to the Coriolis acceleration in the u momen-
tum equation. The metric terms (terms with an a in the
denominator) are small in midlatitudes (the tanφ terms,
however, become significant near the poles). Under these
assumptions, the momentum equations can be expressed
reasonably accurately as

du

dt
= − 1

ρ

∂p

∂x
+ f v + Fu (2.54)

dv

dt
= − 1

ρ

∂p

∂y
− fu + Fv (2.55)

dw

dt
= − 1

ρ

∂p

∂z
− g + Fw (2.56)

where f = 2$ sin φ is the Coriolis parameter. The above
forms probably are most familiar to readers and will be
the forms most often used throughout this book. In vector
form, we can write these as

dv
dt

= − 1

ρ
∇p − gk − f k × v + F. (2.57)

In a few locations in the book it will be advantageous to
use pressure as a vertical coordinate. In isobaric coordinates,
the horizontal momentum equation can be written as

dvh

dt
= −∇p% − f k × vh + F, (2.58)

where vh = (u, v) is the horizontal wind, d/dt = ∂/∂t +
u∂/∂x + v∂/∂y + ω∂/∂p, ω = dp/dt is the vertical veloc-
ity, % = gz is the geopotential, and horizontal deriva-
tives in d/dt and ∇p are evaluated on constant pressure
surfaces.

2.3.2 Balanced flow
In many situations the forces in the momentum equations
are in balance or near balance. It will be useful to draw
upon knowledge of such equilibrium states later in the text.
For example, equilibrium states are the starting point for
the study of many dynamical instabilities.

In the horizontal, geostrophic balance results when hori-
zontal accelerations are zero owing to a balance between the
horizontal pressure gradient force and the Coriolis force.
If du/dt and dv/dt vanish from (2.54) and (2.55), respec-
tively, then, neglecting Fu and Fv , we obtain the geostrophic
wind relations

ug = − 1

ρf

∂p

∂y
(2.59)

vg = 1

ρf

∂p

∂x
(2.60)

where vg = (ug, vg, 0) = 1
ρf k × ∇hp is the geostrophic wind.

In isobaric coordinates,

ug = −1

f

∂%

∂y
(2.61)

vg = 1

f

∂%

∂x
, (2.62)

and vg = 1
f k × ∇p%. Using the above definitions, (2.58)

can be written as

dvh

dt
= −f k × va + F. (2.63)

where va = vh − vg is the ageostrophic wind. Neglecting
the variation of f with latitude, it is easily shown that the
geostrophic wind is nondivergent; thus, the ageostrophic
part of the wind field contains all of the divergence.

In the vertical, hydrostatic balance occurs when grav-
ity and the vertical pressure gradient force are equal
and opposite. If dw/dt is negligible (and also assuming
Fw is negligible), then we readily obtain the hydrostatic
equation from (2.56). In height coordinates it takes the
form

∂p

∂z
= −ρg, (2.64)

and in isobaric coordinates,

∂%

∂p
= −RT

p
. (2.65)

Integration of (2.65) over a layer yields the hypsometric
equation, which relates the thickness of the layer to the
temperature within the layer, that is,

z(pt) − z(pb) =
∫ pb

pt

RT

g
d ln p = Rd

g

∫ pb

pt

Tv d ln p

= RdTv

g
ln

(
pb

pt

)
, (2.66)
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compensating subsidence, where adiabatic warming low-
ers the density in the column (e.g., the wake depressions
and inflow lows of mesoscale convective systems), and the
increase of surface pressure in regions where evaporative
cooling increases density (e.g., mesohighs within mesoscale
convective systems).

2.5.2 Hydrostatic and nonhydrostatic
pressure perturbations

There are many mesoscale phenomena for which the hydro-
static approximation is not a good one (i.e., dw/dt is
significant). In such instances, pressure perturbations can-
not be deduced accurately using an integrated form of the
hydrostatic equation like that used above. Moreover, it is
often more intuitive to partition variables into base state
values and perturbations from the base state. In principle,
any base state can be specified, but we typically choose a
base state that is representative of some average state of the
atmosphere in order to facilitate interpretation of what the
deviations from the base state imply. For example, a hor-
izontally homogeneous, hydrostatic base state is the most
common choice.

Let us describe the total pressure p and density ρ as the
sum of a horizontally homogeneous base state pressure and
density, and a deviation from this base state, that is,

p(x, y, z, t) = p(z) + p′(x, y, z, t) (2.120)

ρ(x, y, z, t) = ρ(z) + ρ ′(x, y, z, t), (2.121)

where the base state is denoted with overbars, the deviation
from the base state is denoted with primes, and the base state
is defined such that it is in hydrostatic balance ( ∂p

∂z = −ρg).
The perturbation pressure, p′, can be represented as

the sum of a hydrostatic pressure perturbation p′
h and a

nonhydrostatic pressure perturbation p′
nh, that is,

p′ = p′
h + p′

nh. (2.122)

The former arises from density perturbations by way of the
relation

∂p′
h

∂z
= −ρ ′g, (2.123)

which allows us to rewrite the inviscid form of (2.56) as

dw

dt
= − 1

ρ

∂p′
nh

∂z
. (2.124)

Hydrostatic pressure perturbations occur beneath buoyant
updrafts (where p′

h < 0) and within the latently cooled
precipitation regions of convective storms (where
p′

h > 0) (e.g., Figure 5.23). The nonhydrostatic pressure

perturbation is simply the difference between the total
pressure perturbation and hydrostatic pressure pertur-
bation and is responsible for vertical accelerations. An
alternate breakdown of pressure perturbations is provided
below.

2.5.3 Dynamic and buoyancy pressure
perturbations

Another common approach used to partition the pertur-
bation pressure is to form a diagnostic pressure equation
by taking the divergence (∇·) of the three-dimensional
momentum equation. We shall use the Boussinesq momen-
tum equation for simplicity, which can be written as
[cf. (2.43)]

∂v
∂t

+ v · ∇v = −α0∇p′ + Bk − f k × v (2.125)

where α0 ≡ 1/ρ0 is a constant specific volume and the
Coriolis force has been approximated as −f k × v. The use
of the fully compressible momentum equations results in
a few additional terms upon taking the divergence, but
the omission of these terms does not severely hamper a
qualitative assessment of the relationship between pressure
perturbations and the wind and buoyancy fields derived
from the Boussinesq momentum equations.

The divergence of (2.125) is

∂(∇ · v)

∂t
+ ∇ · (v · ∇v) = −α0∇2p′ + ∂B

∂z
−∇ · (f k × v). (2.126)

Using ∇ · v = 0, we obtain

α0∇2p′ = −∇ · (v · ∇v) + ∂B

∂z
− ∇ · (f k × v). (2.127)

After evaluating ∇ · (v · ∇v) and ∇ · (f k × v), we obtain

α0∇2p′ = −
[(

∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2
]

−2
(

∂v

∂x

∂u

∂y
+ ∂w

∂x

∂u

∂z
+ ∂w

∂y

∂v

∂z

)

+∂B

∂z
+ f ζ − βu, (2.128)

where ζ = ∂v
∂x − ∂u

∂y and β = df /dy. The last term on the
rhs of (2.128) is associated with the so-called β effect and is
small, even on the synoptic scale. The second-to-last term
on the rhs of (2.128) is associated with the Coriolis force.
The remaining terms will be discussed shortly.
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The origin of the buoyancy force can be elucidated by first
rewriting (2.56), neglecting Fw , as

ρ
dw

dt
= −∂p

∂z
− ρg. (2.72)

Let us now define a horizontally homogeneous base state
pressure and density field (denoted by overbars) that is in
hydrostatic balance, such that

0 = −∂p

∂z
− ρg. (2.73)

Subtracting (2.73) from (2.72) yields

ρ
dw

dt
= −∂p′

∂z
− ρ ′g, (2.74)

where the primed p and ρ variables are the deviations
of the pressure and density field from the horizontally
homogeneous, balanced base state [i.e., p = p(z) + p′, ρ =
ρ(z) + ρ ′]. Rearrangement of terms in (2.74) yields

dw

dt
= − 1

ρ

∂p′

∂z
− ρ ′

ρ
g (2.75)

= − 1

ρ

∂p′

∂z
+ B (2.76)

where B (= − ρ′

ρ
g) is the buoyancy and − 1

ρ
∂p′

∂z is the vertical
perturbation pressure gradient force. The vertical perturba-
tion pressure gradient force arises from velocity gradients
and density anomalies. A more thorough examination of
pressure perturbations is undertaken in Section 2.5.

When the Boussinesq approximation is valid
(Section 2.2), ρ(x, y, z, t) is replaced with a constant ρ0

everywhere that ρ appears in the momentum equations
except in the numerator of the buoyancy term in the
vertical momentum equation. Similarly, when the anelastic
approximation is valid, ρ(x, y, z, t) is replaced with ρ(z) in
the momentum equations except in the numerator of the
buoyancy term in the vertical momentum equation.

It is often sufficiently accurate to replace ρ with ρ in the
denominator of the buoyancy term, that is,

B = −ρ ′

ρ
g ≈

(
T ′

v

Tv
− p′

p

)
g, (2.77)

where we also have made use of the equation of state
and have assumed that perturbations are small relative to
the mean quantities. In many situations, |p′/p| $ |T ′

v/Tv|,
in which case B ≈ T ′

v/Tv (it can be shown that |p′/p| $
|T ′

v/Tv| when u2/c2 $ |T ′
v/Tv|, where c =

√
cpRdTv/cv is

the speed of sound). Furthermore, it is often customary
to regard the reference state virtual temperature as that
of the ambient environment, and the virtual temperature
perturbation as the temperature difference between an air
parcel and its surrounding environment, so that

B ≈
Tvp − Tvenv

Tvenv

g, (2.78)

where Tvp is the virtual temperature of an air parcel and
Tvenv is the virtual temperature of the environment. When
an air parcel is warmer than the environment, a positive
buoyancy force exists, resulting in upward acceleration.

When hydrometeors are present and assumed to be
falling at their terminal velocity, the downward acceleration
due to drag from the hydrometeors is equal to grh, where
rh is the mass of hydrometeors per kg of air (maximum
values of rh within a strong thunderstorm updraft typically
are 8–18 g kg−1). The effect of this hydrometeor loading on
an air parcel can be incorporated into the buoyancy; for
example, we can rewrite (2.77) as

B ≈
(

T ′
v

Tv
− p′

p
− rh

)
g =

[
θ ′

v

θv
+

(
R

cp
− 1

)
p′

p
− rh

]
g

=
[

θ ′
ρ

θρ

+
(

Rd

cp
− 1

)
p′

p

]

g, (2.79)

where θ ′
ρ = θρ − θρ (θρ = θ v if the environment contains

no hydrometeors).8 Examination of (2.79) reveals that the
positive buoyancy produced by a 3 K virtual temperature
excess (i.e., how warm a parcel is compared to its envi-
ronment) is offset entirely (assuming θv ∼ 300 K) by a
hydrometeor mixing ratio of 10 g kg−1. In many applica-
tions throughout this book, we can understand the essential

8 Sometimes the pressure gradient force is expressed in terms of a
nondimensional pressure, π = (p/p0)R/cp , often referred to as the Exner

function. In that case, the rhs of (2.75) can be written as−cpθρ
∂π ′
∂z + g

θ ′
ρ

θρ
,

where π ′ is the perturbation Exner function and θρ = θ v if the base
state is unsaturated, as is typically the case. Notice that the buoyancy
term gθ ′

ρ/θρ has the base state density potential temperature in its
denominator, in contrast to the buoyancy term −gρ′/ρ in (2.75).
When the Exner function is used in the pressure gradient force and
buoyancy is written as gθ ′

ρ/θρ , part of the pressure perturbation that
contributes to ρ′ is absorbed by θ ′

ρ , and the remainder of the pressure
perturbation is absorbed by π ′. On the other hand, if the vertical

pressure gradient and buoyancy are written as − 1
ρ

∂p′
∂z and −gρ′/ρ,

respectively, as on the rhs of (2.75), and if the buoyancy is approximated
as −gρ′/ρ ≈ −gρ′/ρ ≈ gθ ′

ρ/θρ , then only part of the contribution of

p′ to ρ′ is included. In summary, replacing −gρ′/ρ with gθ ′
ρ/θρ is an

approximation if the pressure gradient force is expressed in terms of ρ

and p′, and is exact if the pressure gradient force is expressed in terms of
θρ and π ′.
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small, even on the synoptic scale. The second-to-last term
on the rhs of (2.128) is associated with the Coriolis force.
The remaining terms will be discussed shortly.
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On the synoptic scale, the Coriolis force tends to domi-
nate (2.128) and, neglecting the β effect, we obtain

α0∇2p′ = f ζ. (2.129)

The Laplacian of a wavelike variable away from boundaries
tends to be positive (negative) where the perturbations of
the variable itself are negative (positive). Thus, ∇2p′ ∝ −p′

and
p′ ∝ −f ζ , (2.130)

which is the familiar synoptic-scale relationship between
pressure perturbations and flow curvature: anticyclonic
flow is associated with high pressure and cyclonic flow is
associated with low pressure.

Hereafter, we shall neglect the terms in (2.128) associated
with the Coriolis force and β effect. Also, it will be helpful to
rewrite (2.128) in terms of vorticity (ω) and the deformation
tensor (also known as the rate-of-strain tensor), eij, such
that

α0∇2p′ = −e2
ij + 1

2
|ω|2 + ∂B

∂z
, (2.131)

where

e2
ij = 1
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3∑

i=1

3∑

j=1

(
∂ui

∂xj
+

∂uj

∂xi

)2

(2.132)

and u1 = u, u2 = v, u3 = w, x1 = x, x2 = y, and x3 = z.
Deformation describes the degree to which a fluid element
changes shape as a result of spatial variations in the velocity
field (e.g., fluid elements can be stretched or sheared by
velocity gradients).

For well-behaved fields (i.e., ∇2p′ ∝ −p′),

p′ ∝ e2
ij︸︷︷︸

splat

−1

2
|ω|2

︸ ︷︷ ︸
spin

︸ ︷︷ ︸
dynamic pressure perturbation

−∂B

∂z︸ ︷︷ ︸
buoyancy pressure perturbation

.

(2.133)
We see that deformation is always associated with high
perturbation pressure via the e2

ij term, sometimes known
as the splat term.11 Rotation (of any sense) is always
associated with low pressure by way of the |ω|2 term,
sometimes referred to as the spin term. We know that,
hydrostatically, warming in a column leads to pressure falls
in the region below the warming. The ∂B/∂z or buoyancy
pressure term partly accounts for such hydrostatic effects.

11 The informal, and perhaps a bit humorous, name of the splat term
originates from the field of fluid dynamics, presumably because the term
is large when fluid elements are deformed by velocity gradients in a way
that is similar to how a fluid element would flatten if impacted against
an obstacle.

Low- (high-) pressure perturbations occur below (above)
regions of maximum buoyancy (e.g., below and above a
region of maximum latent heat release). Although it is
tempting to regard the terms on the rhs of (2.133) as
forcings for p′, (2.133) is a diagnostic equation rather than
a prognostic equation. In other words, the terms on the rhs
of (2.133) are associated with pressure fluctuations, rather
than being the cause of the pressure fluctuations.

Pressure fluctuations associated with the first two terms
on the rhs of (2.133) are sometimes referred to as dynamic
pressure perturbations, p′

d, whereas pressure perturbations
associated with the third term on the rhs of (2.133) some-
times are referred to as buoyancy pressure perturbations, p′

b,
where

p′ = p′
d + p′

b, (2.134)

and
α0∇2p′

d = −e2
ij +

1

2
|ω|2 (2.135)

α0∇2p′
b = ∂B

∂z
. (2.136)

Comparison of the partitioning of pressure perturbations
in this section with that performed in the previous section
[compare (2.122) with (2.134)] reveals that the nonhydro-
static pressure perturbation, p′

nh, comprises the dynamic
pressure perturbation, p′

d, and a portion of the buoyancy
pressure perturbation, p′

b. The hydrostatic pressure pertur-
bation, p′

h, comprises the remainder of p′
b. It can be shown

that − 1
ρ

∂p′
b

∂z + B is independent of the specification of the
somewhat arbitrary base state ρ(z) profile, unlike B and

− 1
ρ

∂p′
b

∂z , which individually depend on the base state. For

this reason, diagnostic studies often evaluate − 1
ρ

∂p′
b

∂z + B
collectively and refer to it as the buoyancy forcing. In
such instances, B is sometimes referred to as the thermal
buoyancy.12

Examples of the pressure perturbation fields associated
with a density current (Section 5.3.2) and a buoyant, moist
updraft are presented in Figures 2.6 and 2.7. In the case of
the density current (Figure 2.6), positive p′

h and p′
b are found

within the cold anomaly, with the maxima at the ground. A
discrete excess in total pressure is present at the leading edge
of the density current. This high pressure is a consequence
of p′

nh > 0 and p′
d > 0 and the fact that

(
∂u
∂x

)2
is large there.

There is also a prominent area of p′ < 0 (and p′
d < 0)

centered behind the leading edge of the density current,
near the top of the density current, associated with the
horizontal vorticity that has been generated baroclinically.
In the case of the moist, buoyant updraft (Figure 2.7),

12 Additional discussion is provided by Doswell and Markowski (2004).
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associated with low pressure by way of the |ω|2 term,
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associated with low pressure by way of the |ω|2 term,
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collectively and refer to it as the buoyancy forcing. In
such instances, B is sometimes referred to as the thermal
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updraft are presented in Figures 2.6 and 2.7. In the case of
the density current (Figure 2.6), positive p′
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b are found
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d > 0 and the fact that
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is large there.
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Figure 2.6 The pressure perturbations associated with a numerically simulated density current. The horizontal and vertical
grid spacing of the simulation is 100 m. The ambient environment is unstratified. The domain shown is much smaller
than the actual model domain used in the simulation. Potential temperature perturbations (θ ′) are shown in each panel
(refer to the color scale). Wind velocity (v) vectors in the x-z plane are shown in the top left panel (a reference vector
is shown in the corner of this panel). Pressure perturbations are presented in the other panels. Units are Pa; the contour
interval is 25 Pa = 0.25 mb (dashed contours are used for negative values). Note that p′ = p′

h + p′
nh = p′

d + p′
b. The p′

b

field was obtained by solving ∇2p′
b = ∂(ρB)

∂z , where ρ is the base state density, using periodic lateral boundary conditions

and assuming
∂p′

b
∂z = 0 at the top and bottom boundaries. (Regarding the boundary conditions, all that is known is that

∂p′
∂z = ρB at the top and bottom boundaries, owing to the fact that dw/dt = 0 at these boundaries, but it is somewhat

arbitrary how one specifies the boundary conditions for
∂p′

b
∂z and

∂p′
d

∂z individually.) Because of the boundary conditions
used, the retrieved p′

b field is not unique. A constant was added to the retrieved p′
b field so that the domain-averaged p′

b
field is zero. The p′

d field was then obtained by subtracting p′
b from the total p′ field.

a region of p′
h < 0 (and p′

nh > 0) is located beneath the
buoyant updraft. A region of p′

d > 0 exists above (below)
the maximum updraft where horizontal divergence (con-
vergence) is strongest;

(
∂u
∂x

)2
is large in both regions. On

the flanks of the updraft, p′
d < 0 as a result of the horizon-

tal vorticity that has been generated baroclinically by the
horizontal buoyancy gradients. The total p′ field opposes

the upward-directed buoyancy force, in large part as a
result of the p′

b field (i.e., the p′ and p′
b fields are well-

correlated).
It is often useful to partition the wind field into a mean

flow with vertical wind shear representing the environment
(denoted with overbars) and departures from the mean
(denoted with primes); i.e., let u = u + u′, v = v + v′, and
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Figure 2.7 As in Figure 2.6, but for the case of a warm bubble released in a conditionally unstable environment. The
bubble had an initial potential temperature perturbation of 2 K, a horizontal radius of 5 km, and a vertical radius of 1.5 km.
The bubble was released 1.5 km above the ground. The fields shown above are from 600 s after the release of the bubble.
The environment has approximately 2200 J kg−1 of CAPE and is the environment used in the simulations of Weisman and
Klemp (1982). The horizontal and vertical grid spacing is 200m (the domain shown above is much smaller than the actual
model domain). The contour interval is 25 Pa (0.25 mb) for p′, p′

b, and p′
d. The contour interval is 50 Pa (0.50 mb) for p′

h
and p′

nh.

w = w′. Then (2.133) becomes

p′ ∝ e′2
ij − 1

2
|ω′|2

︸ ︷︷ ︸
nonlinear dynamic pressure perturbation

+2
(

∂w′

∂x

∂u

∂z
+ ∂w′

∂y

∂v

∂z

)

︸ ︷︷ ︸
linear dynamic pressure perturbation

−∂B

∂z︸ ︷︷ ︸
buoyancy pressure perturbation

.(2.137)

where e′
ij and ω′ are the deformation and vorticity

perturbations, respectively. The dynamic pressure terms

involving spin and splat are referred to as nonlinear dynamic
pressure terms, whereas the remaining dynamic pressure
terms are referred to as linear dynamic pressure terms
because they include only one perturbation quantity per
term.

The linear dynamic pressure terms can be written as

2
(

∂w′

∂x

∂u

∂z
+ ∂w′

∂y

∂v

∂z

)
= 2S · ∇hw

′ (2.138)

where S = (∂u/∂z, ∂v/∂z) is the mean vertical wind shear
and ∇hw

′ is the horizontal gradient of the vertical velocity
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displaced parcel as a function of the environmental lapse
rate; gravity waves are discussed in much greater detail in
Chapter 6.

For γ >"p, i
[

g
T0

("p − γ )
]1/2

is real, and as t becomes
large, (3.7) becomes

#z(t) = C1e
[

g
T0

(γ−"p)
]1/2

t
. (3.10)

The displacement of the parcel increases exponentially with
time, implying instability, although (3.10) fails to tell us
how far a parcel will rise. The assumed linear profile of
environmental temperature does not extend to infinity;
(3.10) is only valid for relatively small #z.

An environmental lapse rate for which γ >"d is said
to be absolutely unstable, and when γ < "m the environ-
mental lapse rate is said to be absolutely stable. When
"m < γ < "d, the environmental lapse rate is condition-
ally unstable (stable with respect to unsaturated vertical
displacements, unstable with respect to saturated vertical
displacements). When γ = "d (γ = "m) the environmen-
tal lapse rate is said to be neutral with respect to dry
(saturated) vertical displacements. Lastly, when γm >"m,
where γ = γm when the atmosphere is saturated, the envi-
ronmental lapse rate is regarded as moist absolutely unstable.
In terms of the environmental potential temperature and
equivalent potential temperature, absolute instability is
present when ∂θ/∂z < 0, conditional instability is present
when ∂θ

∗
e/∂z < 0, and absolute stability is present when

∂θ
∗
e /∂z > 0, where θ

∗
e is the equivalent potential tempera-

ture that the environment would have if it were saturated
at its current temperature and pressure. Dry (moist) neu-
tral conditions are present when ∂θ/∂z = 0 (∂θ

∗
e /∂z = 0).

Moist absolute instability is present when ∂θ e/∂z < 0 in a
saturated atmosphere.

There is often confusion between the aforementioned
lapse rate definition of stability, which involves infinites-
imal displacements and depends on the local lapse rate
compared with the dry and moist adiabatic lapse rates, and
what sometimes is referred to as the available-energy defini-
tion of stability, which depends on whether a parcel, if given
a sufficiently large finite displacement, acquires positive
buoyant energy (i.e., an acceleration due to buoyancy act-
ing in the direction of the displacement).3 Finite-amplitude
displacements are often of greater interest in the release
of mesoscale instabilities. For example, a sounding with
convective inhibition (CIN) requires a finite upward dis-
placement of a surface parcel to its level of free convection
(LFC), after which convective available potential energy

3 Sherwood (2000) and Schultz et al. (2000) discuss at length the potential
confusion surrounding these definitions.

(CAPE) is released and the parcel freely accelerates away
from its initial location. The parcel keeps accelerating
upward as long as B > 0, regardless of the environmen-
tal lapse rate at any particular level where B > 0. Another
example is the release of symmetric instability, wherein
frontogenesis drives circulations believed to provide finite-
amplitude slantwise displacements that enable air parcels
to reach a point where they are accelerated in the same
direction as their initial displacements.

3.1.1 Vertical velocity of an updraft
If we multiply both sides of (3.1) by w ≡ dz/dt, we
obtain

w
dw

dt
= B

dz

dt
(3.11)

d

dt

(
w2

2

)
= B

dz

dt
(3.12)

Next, we integrate (3.12) over the time required to travel
from the LFC to the equilibrium level (EL). We assume
w = 0 at the LFC, since the only force considered here is
the buoyancy force, which, by definition, does not become
positive until the LFC is reached. Also, we assume that
the maximum vertical velocity, wmax, occurs at the EL,
which is consistent with the assumption that dw/dt = B
(neglecting the weight of hydrometeors in B). Integration
of (3.12) yields ∫ EL

LFC
dw2 = 2

∫ EL

LFC
B dz (3.13)

w2
EL − w2

LFC = 2
∫ EL

LFC
B dz (3.14)

w2
max = 2

∫ EL

LFC
B dz (3.15)

wmax =
√

2 CAPE. (3.16)

For CAPE = 2000 J kg−1, which corresponds to an average
temperature (or virtual temperature) excess of ≈5 K over
a depth of 12 km, parcel theory predicts wmax = 63 m s−1.
The prediction of wmax in a convective updraft by (3.16)
typically is too large, for several reasons discussed in the
next section. Therefore, the value of wmax predicted by
(3.16) can be interpreted as an upper limit for vertical
velocity when buoyancy is the only force; wmax sometimes
is called the thermodynamic speed limit.4

4 We leave it as an exercise for the reader to show that (3.16) can also
be obtained by applying the Bernoulli equation given by (2.146) along a
trajectory from the LFC to EL, neglecting pressure perturbations.
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displaced parcel as a function of the environmental lapse
rate; gravity waves are discussed in much greater detail in
Chapter 6.
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Figure 3.1 A comparison of the perturbation pressure (p′) fields and zonal (u) and vertical (w) velocity components for
the case of a wide warm bubble (left panels) and a narrow warm bubble (right panels) released in a conditionally unstable
atmosphere in a three-dimensional numerical simulation. The contour intervals for p′ and the wind components are 25 Pa
and 2 m s−1, respectively (dashed contours are used for negative values). Potential temperature perturbations (θ ′) are
shown in each panel (refer to the color scale). The horizontal and vertical grid spacing is 200 m (the domain shown above
is much smaller than the actual model domain). Both warm bubbles had an initial potential temperature perturbation of
2 K and a vertical radius of 1.5 km, and were released 1.5 km above the ground. The wide (narrow) bubble had a horizontal
radius of 10 km (3 km). In the simulation of the wide (narrow) bubble, the fields are shown 800 s (480 s) after its release.
The fields are shown at times when the maximum buoyancies are comparable. Despite the comparable buoyancies, the
narrow updraft is 20% stronger owing to the weaker adverse vertical pressure gradient.
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Figure 3.1 A comparison of the perturbation pressure (p′) fields and zonal (u) and vertical (w) velocity components for
the case of a wide warm bubble (left panels) and a narrow warm bubble (right panels) released in a conditionally unstable
atmosphere in a three-dimensional numerical simulation. The contour intervals for p′ and the wind components are 25 Pa
and 2 m s−1, respectively (dashed contours are used for negative values). Potential temperature perturbations (θ ′) are
shown in each panel (refer to the color scale). The horizontal and vertical grid spacing is 200 m (the domain shown above
is much smaller than the actual model domain). Both warm bubbles had an initial potential temperature perturbation of
2 K and a vertical radius of 1.5 km, and were released 1.5 km above the ground. The wide (narrow) bubble had a horizontal
radius of 10 km (3 km). In the simulation of the wide (narrow) bubble, the fields are shown 800 s (480 s) after its release.
The fields are shown at times when the maximum buoyancies are comparable. Despite the comparable buoyancies, the
narrow updraft is 20% stronger owing to the weaker adverse vertical pressure gradient.


