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1 Cartesian Tensor Notation

Reynolds decomposition of velocity:

V = V + v ⇒ V = Ui + ui

Mean velocity:

V = U i + V j + Wk = (U, V,W ) ⇒ Ui = (U1, U2, U3)

Turbulent velocity:

v = ui + vj + wk = (u, v, w) ⇒ ui = (u1, u2, u3)

Gradient operator:

∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
⇒ ∂

∂xk

=

(
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)

Advection operator:

V · ∇ = U
∂

∂x
+ V

∂

∂y
+ W

∂

∂z
⇒ Uk

∂

∂xk

= U1
∂

∂x1

+ U2
∂

∂x2

+ U3
∂

∂x3

The covariance matrix is a tensor of rank 2: uu uv uw
vu vv vw
wu wv ww

⇒ uiuj =

 u1u1 u1u2 u1u3

u2u1 u2u2 u2u3

u3u1 u3u2 u3u3


Turbulent kinetic energy, e = q2/2, and summation over repeated indices:

q2 = uu + vv + ww ⇒ q2 = uiui = u1u1 + u2u2 + u3u3
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A tensor of rank 3:
 uuu uuv uuw

uvu uvv uvw
uwu uwv uww

 ,

 vuu vuv vuw
vvu vvv vvw
vwu vwv vww

 ,

 wuu wuv wuw
wvu wvv wvw
wwu wwv www




⇒ uiujuk = (u1ujuk, u2ujuk, u3ujuk)

=


 u1u1u1 u1u1u2 u1u1u3

u1u2u1 u1u2u2 u1u2u3

u1u3u1 u1u3u2 u1u3u3

 ,

 u2u1u1 u2u1u2 u2u1u3

u2u2u1 u2u2u2 u2u2u3

u2u3u1 u2u3u2 u2u3u3

 ,

 u3u1u1 u3u1u2 u3u1u3

u3u2u1 u3u2u2 u3u2u3

u3u3u1 u3u3u2 u3u3u3




Kronecker delta:

δij =

{
1 i = j
0 i 6= j

}
First moments of velocity (3 unique):

Ui

Second moments of velocity (9, 6 are unique):

uiuj

Third moments of velocity (27, 10 are unique):

uiujuk
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2 The Closure Problem

The momentum equation for a homogeneous incompressible fluid at high Re is

∂V

∂t
+ V · ∇V = −∇

(
P
ρ0

)
+ ν∇2V. (1)

Decompose the velocity and pressure into means and deviations:

V = Ui + ui

P = P + p

Substitute into (1) and average:

∂Uj

∂t
+ Uk

∂Uj

∂xk

= − ∂

∂xj

(
P

ρ0

)
− ∂ukuj

∂xk

. (2)

The additional term is due to momentum transport by the turbulent velocity fluc-
tuations.

One way to close the equations is to assume that

ukuj = −Km

(
∂Uk

∂xj

+
∂Uj

∂xk

)
.

This is the eddy viscosity model. However, Km is a property of the flow, not of the
fluid (as viscosity is), and is not necessarily a constant (as viscosity is). Using a
constant Km is generally not a good assumption in the atmosphere.

Another way to close the equations is to derive equations for the Reynolds
stresses, ukuj, and to make assumptions for the unknown terms in these equations.
This is a second-moment (or second-order) closure model.
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3 Closure Models
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4 A Simple Turbulence Closure Model

We use the eddy viscosity model for the turbulent fluxes. We set the eddy viscosity
Km to be proportional to the turbulence velocity scale q times a turbulence length
scale l. This allows Km to depend on the turbulence properties, which is a more
realistic than using a constant Km.

Unknown turbulent fluxes Modeling assumption

uiuj (momentum)
q2

3
δij − ql1

(
∂Ui

∂xj

+
∂Uj

∂xi

)

uiθ (any scalar) −ql2
∂Θ

∂xi

To close these models for the turbulent fluxes, we require an equation for q2 ≡
uiui. To do this, we start with the full equation for q2:

dq2

dt
= −∂uiuiuj

∂xj

− 2

ρ

∂puj

∂xj

− 2uiuj
∂Ui

∂xj

+ 2
gi

Θ
uiθv − 2ε.

The terms on the r.h.s. of this equation represent turbulent transport, pressure trans-
port, shear (mechanical) production, buoyancy production (or loss), and dissipation,
respectively. To close this equation we

1. Assume that production and dissipation balance:

0 = SP + BP −D.

2. Use the models above for the fluxes.

3. Model dissipation using

ε =
q3

Λ1

.

The result is

q2 = Λ1l1

[
Sij

∂Ui

∂xj

− l2
l1

gi

Θ

∂Θv

∂xi

,

]
(3)

where

Sij ≡
∂Ui

∂xj

+
∂Uj

∂xi

5



and
gi = (0, 0, g).

Let l1 = A1l, l2 = A2l, and Λ1 = B1l, where l is the turbulence length scale.
A1 = 0.92, A2 = 0.74, and B1 = 16.6 are constants determined from experiments.
Many prescriptions for the turbulent length scale l exist. The only definite constraint
is that l → kz near the surface so that Km = ku∗z under neutral conditions. One
commonly used form is

l =
l∞

1 + l∞/kz
,

where the asymptotic length scale l∞ is specified to be about 10 percent of the
boundary layer depth. The specification of l is usually not very critical.

5 Richardson Number Dependence

Equation (3) includes the effects of stratification, so it should exhibit a dependence on
Richardson number. To show this, we will first simplify (3) by making the boundary
layer approximation:

U3 = 0,
∂

∂x1

=
∂

∂x2

= 0.

Then only

S13 = S31 =
∂U1

∂x3

and

S23 = S32 =
∂U2

∂x3

are nonzero, so

Sij
∂Ui

∂xj

=

(
∂U1

∂x3

)2

+

(
∂U2

∂x3

)2

.

Also,
gi

Θ

∂Θv

∂xi

=
g

Θ

∂Θv

∂x3

.

Using these simplifications in (3), we obtain

q2 = Λ1l1

(∂U1

∂x3

)2

+

(
∂U2

∂x3

)2

− l2
l1

g

Θ

∂Θv

∂x3

 . (4)
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The condition for q2 > 0 is therefore(
∂U1

∂x3

)2

+

(
∂U2

∂x3

)2

− l2
l1

g

Θ

∂Θv

∂x3

> 0.

Write this in terms of a gradient Richardson number Ri:

l1
l2

>
g
Θ

∂Θv

∂x3(
∂U1

∂x3

)2
+
(

∂U2

∂x3

)2 ≡ Ri

or

Ri <
l1
l2

=
A1l

A2l
=

A1

A2

=
0.92

0.74
= 1.24.

Theoretical and laboratory results suggest that laminar flow becomes turbulent when

Ri < 0.25,

and that turbulent flow becomes laminar when

Ri > 1.

These are local criteria. Even if Ri > 1 when estimated using resolved variables, it
may be < 1 locally within a grid volume.

6 Performance

This simple closure model works best when its assumption of a local balance between
production and dissipation is most nearly met. This condition is most likely to be
valid when and where shear production dominates buoyancy production.
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