A Simple Turbulence Closure Model
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1 Cartesian Tensor Notation

Reynolds decomposition of velocity:
V=V+v=V=U+uy

Mean velocity:

V:U1+VJ+Wk:(U,V,W):>Uz:(Ul,UQ,Ug)

Turbulent velocity:
v =ui+ vj + wk = (u,v,w) = u; = (uy, ug, us)

Gradient operator:

o_ (0 0 9Y_ 9 (o2 9 0
n 0% N 61’1’ 8ZE27 8x3

Advection operator:
0 0 0

— 0 0 0 0
V.V=U2 il - U, — —_ —
vV U8x+V8y+W62:Uk8xk U18$1+U26$2+U385L'3

The covariance matrix is a tensor of rank 2:

(uu uU  uw

Ua2U1 UU2 UU3
UsU1 U3U2 U3U3

U1y UrU2 UIU3
U VU YW = Uu; =
wu WU ww

Turbulent kinetic energy, e = ¢?/2, and summation over repeated indices:

q2 :W+W+ww:>q2 = UU; = ULU7 + UUz + UzUs
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A tensor of rank 3:

wuv  wuw

wvv  wow

uuy  uuUv uuw vulu YUV vuw wuu
uvy uUvv  uvw s vvuw Vvvv  vvw s wou
uwy Uwrv  uvww rwu YWY YwWw wwu

= WU, Uy, = (U0, U, Ugl; Uy, UzG; Uy)

UU1U  UIUI U2

= UiU2U;  UULU2

Ujuzu;  U1U3U2

Kronecker delta:

UU1U3 UU1UT  U2UTU2 U2UIU3Z
U1 U2U3 y | U2U2U1  UU2Uz  U2U2U3
U1uzus U2U3zU]  U2U3U2  U2U3U3
S — 1 1=y
‘ 0 i#j

First moments of velocity (3 unique):

Ui

Second moments of velocity (9, 6 are unique):

Ui U

Third moments of velocity (27, 10 are unique):

U;UjUp

wwr vwww

)

Uguiu; UUIU2 UIUIUZ
UsUaU;  U3U2U2  UIUUZ
uzuzu; U3U3zU2 UIUIU3



2 The Closure Problem

The momentum equation for a homogeneous incompressible fluid at high Re is

oV P
V.YV =V (= 2V, 1
5 V-V v<p0>+yv (1)

Decompose the velocity and pressure into means and deviations:

P=P+p

Substitute into (1) and average:

oU; ou; o (P ouRt;
_— —) - . 2
ot Ui Oxy, Ox; (,00) 0wy, @

The additional term is due to momentum transport by the turbulent velocity fluc-
tuations.
One way to close the equations is to assume that

This is the eddy viscosity model. However, K,, is a property of the flow, not of the
fluid (as viscosity is), and is not necessarily a constant (as viscosity is). Using a
constant K, is generally not a good assumption in the atmosphere.

Another way to close the equations is to derive equations for the Reynolds
stresses, U,t;, and to make assumptions for the unknown terms in these equations.
This is a second-moment (or second-order) closure model.



3 Closure Models

First-order cl_osure model :

related to

Second-order closure model :

jiujuk diagnostically

p(ui,j + uj’i) ‘ related to

ete.

Third-order closure model :

U HiYkY diagnosticaily
P((U u; )iy :> related to

etc.

%2}% - $ diagnostically
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prognostically
determined

prognostically

determined

prognostically
determined



4 A Simple Turbulence Closure Model

We use the eddy viscosity model for the turbulent fluxes. We set the eddy viscosity
K,, to be proportional to the turbulence velocity scale ¢ times a turbulence length
scale [. This allows K,, to depend on the turbulence properties, which is a more
realistic than using a constant K.

Unknown turbulent fluxes  Modeling assumption
’ oU; | 9U;
w;u; (momentum) %5@‘ —ql (8% + 81‘3)

;0 (any scalar)  —qly SS

To close these models for the turbulent fluxes, we require an equation for ¢> =
;. To do this, we start with the full equation for ¢:

i owmm  20pw OU. g
M EOPY o Ty 998, — 2.
dt Oz, p Oz, Hitly Oz, * 0" ‘

The terms on the r.h.s. of this equation represent turbulent transport, pressure trans-
port, shear (mechanical) production, buoyancy production (or loss), and dissipation,
respectively. To close this equation we

1. Assume that production and dissipation balance:

0=SP+BP—-D.

2. Use the models above for the fluxes.

3. Model dissipation using

The result is
oU; ly g; 0O,

2= Nl |Sj— — 22
4 11 SZ] 0;1:j ll S 8332 ’ (3)
where aU.  8u
= 2t J
SZJ N ij + aZL‘Z
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and
g; = (07 Oa g)

Let I; = Aql, s = Asl, and Ay = Bjl, where [ is the turbulence length scale.
Ay =0.92, Ay = 0.74, and B; = 16.6 are constants determined from experiments.
Many prescriptions for the turbulent length scale [ exist. The only definite constraint
is that [ — kz near the surface so that K,, = ku.z under neutral conditions. One
commonly used form is |

[ — ‘'
1+ l/k2’

where the asymptotic length scale [, is specified to be about 10 percent of the
boundary layer depth. The specification of [ is usually not very critical.

5 Richardson Number Dependence

Equation (3) includes the effects of stratification, so it should exhibit a dependence on
Richardson number. To show this, we will first simplify (3) by making the boundary
layer approximation:

0 0

U3 - 0, 871‘1 - 87.1'2 - 0
Then only
oUy
S = Gay = 2L
13 31 0
and oU
Sys = S3p = —
23 32 0
are nNONzero, so
g Ui _ (U (005"
" ij B 8x3 (‘31;3 .
Also,
900, g 00,

Using these simplifications in (3), we obtain

oUL\>  [0U,\> 1y g 00
2 AL “r2) 297
1 11 <8$3> + <8ZL’3 ll O 81'3

: (4)
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The condition for ¢*> > 0 is therefore

2 2
AN AN T
81‘3 81’3 l1®aZL’3

Write this in terms of a gradient Richardson number Ri:

l i 891}
1
= S) Oz 5 = Ri
lo (8U1) + (aUQ)
Bmg 6$3

or
L AL A 092
Ried_fat _ A D92 4o
S, T Al A, o

Theoretical and laboratory results suggest that laminar flow becomes turbulent when
Ri < 0.25,
and that turbulent flow becomes laminar when

Ri > 1.

These are local criteria. Even if Ri > 1 when estimated using resolved variables, it
may be < 1 locally within a grid volume.

6 Performance

This simple closure model works best when its assumption of a local balance between
production and dissipation is most nearly met. This condition is most likely to be
valid when and where shear production dominates buoyancy production.



