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Outline

* Non-local transport: EDMF
 EDMF(n)
* Cold pools in cu. Param.



Non-local transport

« EDMF approach (or any non-local approach) is
attempting to represent the effects of the large
eddies or plumes that cannot be represented very
well by a down-gradient approach that does work
well when the eddies are small compared to the BL

depth.



Non-local transport

Observations and LES of surface-heated dry convective BLs (e.g. dashed line in Fig. 9.1) show
that over much of the upper half of the boundary layer (0.4 < z/7,< 0.8), the 0 gradient is very
shightly positive even though the heat flux 1s also upward, opposite to the expectation from
downgradient turbulent diffusion. Nonlocal schemes account for this effect by adding a
correction term to scalar fluxes in convective boundary layers.
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Non-local transport
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Non-local transport

BL parameterizations handle the nonlocal term somewhat differently. In one class of “gradient-
correction’ methods, the turbulent flux of an advected scalar a 1s modelled using a K-profile with

a nonlocal correction Y, added for advected scalars in convective boundary layers
da

w’a'=—Kﬂ[——}fa], O<z<h (9.6)
0z |

The nonlocal term on the right 1s interpreted as being due to boundary-layer filling convective
eddies which distribute the surface flux of @ upward regardless of the local eradient of a. If the
surface flux of a 1s positive, the nonlocal term produces a BL. within which a decreases less with
height than if pure first-order closure were used.




Eddy Diffusivity — Mass flux

A related nonlocal approach for convective boundary layers, EDMF (Eddy Diffusion-Mass Flux)
parameterization (Siebesma et al. 2007), 1s used in the ECMWF weather forecasting model. In a
dry-convective boundary layer, the vertical velocity has a positively-skewed pdf, implying that
updrafts tend to be narrower and more intense than downdrafts, hence presumably more
vertically organized. Siebesma et al. separated out vertical fluxes associated with these strongest
updrafts, covering a horizontal area fraction A ~ 0.05-0.1 of the horizontal area They treated
these fluxes using a “‘mass-flux’ term in which the scalar flux 1s represented using the mean
updraft velocity w,(z) and mean scalar value a,(z) in these updrafts and compensating uniform
downward motion across the remaining fraction 1 - A of the domain:

wa'vr = Aw (a,—a)+ (11— A)w,(a, —a)

—Aw, —A(a,—a)
1-4) d-4)

= Aw (a, —a)+(1- A) ~Aw (a,—a) ifA<<1.



Eddy Diffusivity — Mass flux

Other eddies are assumed to be lesss vertically organized and are treated using eddy
diffusion. Thus, the overall turbulent transport 1s assumed to have the form:

w'a’ = —K(z)f;—j — M(Z){HH(Z) — E(Z)}



Eddy Diffusivity — Mass flux

The mass flux and the value of a, are

calculated from a differential equation describing turbulent mixing into the organized updrafts,
again using ideas transferred from cumulus parameterization:
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where i = 0.15 accounts for pressure forces, b =0.5.



Eddy Diffusivity — Mass flux

The mass flux and the value of a, are

calculated from a differential equation describing turbulent mixing into the organized updrafts,
again using ideas transferred from cumulus parameterization:

dﬂﬂ
dz

=&(z)(a—a,)
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(1- Z;I)diz[?”] = B—bew,

B 1s the updraft buoyancy, and based on LES, the lateral entrainment rate

E(Z)ZU.4[1—|— 1 )

z h—z

and /i 1s determined as the height at which w, goes to zero. Initial updraft



EDMF(n)

dﬂiﬁ
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B 1s the updraft buoyancy, and based on LES, the lateral entrainment rate
£(z)= 0.4[1+L)
z h-z

and /i 1s determined as the height at which w, goes to zero. Initial updraft



Cumulus parameterization for
climate modeling

e Heat and moisture fluxes due to unresolved moist
convection

ArriL 1974 AKIO ARAKAWA AND WAYNE HOWARD SCHUBERT
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Cold pool organization










Boing et al. 2012

Large eddy simulation
(LES)

Total water anomaly

q,-q; (9/kg)

Study cold pool
structures formed by
rain evaporation and
loading

x(m)



3D LES
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3D LES
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Boing et al. 2012

Positive feedback: “cold pools promote deeper, wider,
and more buoyant clouds with higher precipitation

rates”
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Practical applications

* So what if properties of convection vary with cold
pool organization?

 Variability is what cumulus parameterizations are
struggling to represent



Mapes and Neale (2011) “ORG”

* Vary plume properties by an order of magnitude
according to amount of “organization”

b) implementations tested so far

2" plume closure
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plume base T’




Mapes and Neale “ORG”

* Vary plume properties by an order of magnitude
according to amount of “organization”

b) implementations tested so far

precipitation

convection +

ensemble
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Cold pool organization studied in
LES

* Why does cold pool organization promote deep
convection?

* What did Boing et al. (2012) find in their study?

SEPTEMBER 2012
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Boing et al. 2012

Lagrangian particle
trajectories (LPT)
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Boing et al. 2012

Lagrangian particle

* Poor correlation between exit  trajectories (LPT)
height and subcloud layer

thermodynamic properties of
LPTs (like Romps and Kuang 2000 m
2010) 4000 m
* Strong correlation for e>§it O
height and cloud base size ;280 m
m -

* Why do cold pools form larger
clouds?



Cold pool organization studied in
LES

* Wider cloud bases correlated with gust front lifting
and extra moist patches at cold pool intersections.
(Schlemmer and Hohenegger 2014)
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Cold pool organization studied in
LES

* Wider cloud bases correlated with gust front lifting
and extra moist patches at cold pool intersections.
(Schlemmer and Hohenegger 2014)

* Reduced cloud spacing, stronger updraft velocity,
and more deep convection correlated with
intersecting cold pools (Feng et al. 2015)



Cold pool organization studied in
LES

* Do wider bases exist from the start? Why is
entrainment rate initially so large?

* Hypothesis: Merging of cloudy updrafts is
promoted by cold pools. The increase in size from
merging reduces entrainment.
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My proposed research questions
stated simply

1. Does reduced cloud spacing really affect cloud
development?

2. Does merging occur in deep convective
development?

3. How does merging affect development?



Other people’s research

1. What is the importance of gustiness at cold pool
gust front? (Langhans and Romps paper, Steve’s
gustiness slides)

2. Cold pools / Downdrafts (KTK slides)



