
Meteorology 6160
Entrainment Rate Parameterization in Shallow Convecting Layers

Consider the TKE budget in the entrainment zone at the top of a clear
convective boundary layer capped by a stable interface. In the entrainment
zone, transport of TKE into the zone (and possible shear generation of TKE)
must balance destruction by entrainment , dissipation, and storage (see TKE
budget plot). Dimensional arguments following Tennekes (1973) suggest that
for a fully turbulent boundary layer with turbulent velocity scale U and depth
zi, transport, dissipation and entrainment will all be O(U3/zi). For a shear-
driven boundary layer, the shear production will also be of this order, while
the storage term is much smaller if the entrainment zone is strongly stratified.
Hence the entrainment buoyancy flux (w′θ′

v)e should scale as

−(w′b′)e = AU3/zi, (1)

where A is an empirical constant. For a discontinuous inversion with a buoy-
ancy jump ∆θv,

−(w′θ′
v)e = we∆θv. (2)

By substituting (2) into (1), we obtain

we =
AU3

zi∆θv

, (3)

which can be expressed in terms of a bulk interfacial Richardson number
Ri = zi∆θv/U

2 as
we

U
=

A

zi∆θv/U2
=

A

Ri
. (4)

For buoyancy-driven boundary layers, U can be taken as the convective
velocity scale w∗ (Deardorff, 1980). This is obtained from the vertically inte-
grated TKE equation by assuming that buoyancy generation and dissipation
balance: ∫ zi

o

g

θ0

w′θ′
v dz =

∫ zi

o
ε dz

and that

ε =
w3

∗
2.5zi

,

1



which lead to
w3

∗ = 2.5
∫ zi

o

g

θ0

w′θ′
v dz. (5)

In a clear convective boundary layer, w′θ′
v is a linear function of height

above the surface, z:

w′θ′ = (w′θ′
v)s(1− z/zi) + (w′θ′)e(z/zi), (6)

where (w′θ′
v)s is the surface buoyancy flux. This can be used in (5), along

with (1) and (2), to obtain an equation for we in terms of (w′θ′
v)s and ∆θv:

we = [exercise for the student] (7)
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