1. The surface sensible heat flux \(F_s = \rho c_p w' T' = 1000 \text{ W m}^{-2} \) and the atmospheric boundary layer (ABL) depth \(h = 500 \text{ m} \). How much does the average ABL temperature change during 3 h? Use \(\rho = 1.2 \text{ kg m}^{-3} \).

2. Same as problem 1 but in this case \(F_s = -50 \text{ W m}^{-2} \) and \(h = 50 \text{ m} \).

3. 1 cm of water evaporates from the ocean into an ABL that is 500 m deep.
 (a) What is the change in the average ABL water vapor mixing ratio (mass of water vapor per unit mass of dry air), \(\Delta q \)? Use \(\rho = 1.2 \text{ kg m}^{-3} \).
 (b) If this process occurs over 4 h, what is the average surface flux of water vapor, \(F_q = \rho w' q' \)?
 (c) What is the latent heat flux, \(L F_q \)? \(L = 2.5 \times 10^6 \text{ J kg}^{-1} \) is the latent heat of vaporization.

4. The friction velocity \(u_* = 0.3 \text{ m s}^{-1} \).
 (a) What is the magnitude of the surface stress? Use \(\rho = 1.2 \text{ kg m}^{-3} \).
 (b) If \(h = 500 \text{ m} \), how much would the average ABL wind velocity change over 24 h due to the surface stress alone? Assume that the wind velocity and surface stress vectors are parallel.
 (c) What additional forces act to maintain the ABL wind?