Flux-Gradient model (Holton 5.3.2)

In neutral or stably stratified BLs, wind speed & direction may vary sig. w/ ht., so ML model is not approp.

Need a model for turb. mom. fluxes.

Trad. appr. - assume eddies act like molec. diffus., so flux = gradient of mean. Then

\[
\begin{align*}
\overline{u'w'} &= - K_m \frac{\overline{w'}}{\overline{z'}} \\
\overline{v'w'} &= - K_m \frac{\overline{v'}}{\overline{z'}} \\
\overline{\theta'w'} &= - K_h \frac{\overline{\theta'}}{\overline{z'}}
\end{align*}
\]

K_m: eddy viscosity (\(m^2 s^{-1}\))

K_h: eddy diffusivity (\(m^2 s^{-1}\))

Limitations:

- K_m depends on flow, unlike molec. viscosity.

- Constant K is a poor approx. in BL.

- Basis is invalid in many cases because eddies are as large as BL depth, so flux not => mean grad.
Flux-Gradient model (Holton 5.3.2)

In neutral or stably stratified BLs, wind speed & direction may vary sig. w' h, so ML model is not approp.

Need a model for turb. mom. fluxes.

Trad. appr. - assume eddies act like molec. diffus., so flux = gradient of mean. Then

\[u'w' = - K_m \frac{\partial \bar{u}}{\partial z} \]
\[v'w' = - K_m \frac{\partial \bar{u}}{\partial z} \]
\[\theta'w' = - K_h \frac{\partial \bar{\theta}}{\partial z} \]

K_m: eddy viscosity (m^2 s^-1)
K_h: eddy diffusivity (m^2 s^-1)

Limitations:
- K_m depends on flow, unlike molec. viscosity.
- Constant K is a poor approx. in BL.
- Basis is invalid in many cases because eddies are as large as BL depth, so flux not = mean grad.
(Flux-gradient model)

Mixing length model (Holton 5.3.3)

is simplest appr. for est. k.

Assumption: A parcel carries mean props. From orig. level for a distance \tilde{z}', then mix - like avg. molec. travels mean free path before colliding & exch. mom.

Disp. creates a turbul. fluct. that depends on \tilde{z}' and grad. of mean prop.

E.g.,

$$\Theta' = - \tilde{z}' \frac{d\overline{\Theta}}{dz}$$

$$u' = - \tilde{z}' \frac{d\overline{u}}{dz}$$

$$v' = - \tilde{z}' \frac{d\overline{v}}{dz}$$

$\tilde{z}' > 0$ for upward, etc.

Apply to get

$$-\overline{w'w'} = \overline{w'} \tilde{z}' \frac{d\overline{u}}{dz} = \overline{w' \tilde{z}'} \frac{d\overline{u}}{dz}$$

e tc.
Mixing length model (Holton 5.3.3)
is simplest appr. for estimating k.

Assumption: A parcel carries mean props. from orig. level for a
distance ξ', then mix - like avg. molec. travels mean free path
before colliding & exch. mom.
Disp. creates a turbul. flux.
that depends on ξ' and grad.
of mean prop.

E.g.,
\[\Theta' = -\xi' \frac{d\Theta}{dz} \]
\[u' = -\xi' \frac{du}{dz} \]
\[v' = -\xi' \frac{2v'}{dz} \]

$\xi' > 0$ for upward, etc.

Apply to get
\[-uw' = w' \xi' \frac{du}{dz} = w' \xi' \frac{d\tilde{u}}{dz} \]
etc.
How to get W?

Assume buoyancy effects are small, so

$$|w'| \sim |v'|$$ \hspace{1cm} (isotropic eddies)

$$w' \sim w' \left| \frac{\partial \bar{V}}{\partial z} \right|$$

$$\frac{v'}{\bar{V}} + \frac{\bar{V}}{\bar{V}} = \bar{V}$$

Now,

$$-uw' = \frac{\bar{V}'}{\bar{Z}} \left| \frac{\partial \bar{V}}{\partial z} \right| \frac{\bar{W}'}{\bar{Z}}$$

$$= \frac{\bar{V}'}{\bar{Z}} \left| \frac{\partial \bar{V}}{\partial z} \right| \bar{W} \frac{\bar{W}}{\bar{Z}} = \frac{K\bar{V}}{\bar{Z}}$$

so

$$K\bar{V} \equiv \frac{\bar{V}'}{\bar{Z}} \left| \frac{\partial \bar{V}}{\partial z} \right| = \bar{L}^2 \left| \frac{\partial \bar{V}}{\partial z} \right|$$

mixing length

$$l = \left(\frac{\bar{V}'}{\bar{Z}} \right)^{1/2}$$

rms parcel displacement,

a measure of local average eddy size.

\Rightarrow Large eddies, greater shear, \Rightarrow
more turbulent mixing.
How to get w'?

Assume buoyancy effects are small, so

$$|w'| \sim |v'|$$
(isotropic eddies)

$$\nu = \text{horiz. wind}$$

$$\frac{\partial \tilde{V}}{\partial Z}$$

$$\frac{\partial \tilde{U}}{\partial Z}$$

$$\frac{\partial \tilde{V}}{\partial Z}$$

Now,

$$-uw' = \bar{w}' \left(\frac{\partial \tilde{V}}{\partial Z} \right) \bar{U} = \frac{\partial \tilde{V}}{\partial Z} \bar{U} \bar{U} = \frac{\partial \tilde{V}}{\partial Z} \bar{U}$$

$$= \frac{\partial \tilde{V}}{\partial Z} \bar{U}$$

$$\Rightarrow \text{Km} \equiv \frac{\partial \tilde{V}}{\partial Z} \bar{U} = l^2 \left| \frac{\partial \tilde{V}}{\partial Z} \right|$$

mixing length:

$$l \equiv \left(\frac{\tilde{v}^2}{2} \right)^{1/2}$$

rms parcel displacement - a measure of average eddy size.

$$\Rightarrow \text{Large eddies, greater shear, } \Rightarrow \text{more turbulent mixing}$$