Liquid Virtual Dry Static Energy

The virtual dry static energy is

\[s_v = c_p T_v + gz, \]

(1)

where the virtual temperature

\[T_v = T(1 + \delta q_v - q_l) \]

(2)

takes into account the effects on air density of both water vapor (with mixing ratio \(q_v \)) and liquid water (with mixing ratio \(q_l \)). Here \(\delta = 0.608 \).

As moist (and dry) adiabatically conserved quantities, we use the total water mixing ratio \(q_t = q_v + q_l \) and the moist static energy

\[h = c_p T + gz + L q_v. \]

(3)

We can use (1), (2), and (3) to write

\[s_v = h - \epsilon L q_t - [1 - (1 + \delta)\epsilon] L q_v, \]

(4)

where

\[\epsilon \equiv \frac{c_p T}{L}. \]

We can form a conserved quantity called the liquid virtual dry static energy by subtracting \([1 - (1 + \delta)\epsilon] L q_l\) from both sides of (4):

\[s_{vl} \equiv s_v - [1 - (1 + \delta)\epsilon] L q_l = h - (1 - \delta \epsilon) L q_t = h - \mu L q_t, \]

(5)

where \(\mu \equiv 1 - \delta \epsilon \). In unsaturated air, \(s_{vl} = s_v \).