Find u_* and z_0 from the following wind profile measurements made during statically neutral conditions at sunset:

z (m)	$\bar{u} (m/s)$
1	4.6
3	6.0
10	7.6
30	9.0

Answer:

 $u_* = 0.52$ m/s, $z_0 = 0.028$ m. To calculate $u_*,$ apply the log wind profile $u = u_*/k\log(z/z_0),$

at any two heights z_1 and z_2 to obtain

$$u(z_2) - u(z_1) = u_*/k \log(z_2/z_1),$$

then solve for u_* :

$$u_* = k \frac{u(z_2) - u(z_1)}{\log(z_2/z_1)}.$$

To calculate z_0 , solve the log wind profile at any height z for z_0 :

$$z_0 = z \exp(-ku(z)/u_*).$$

The graphical solution method is to plot the wind profile u versus $\log z$, then extrapolate the profile to u = 0. The height at which $u = \operatorname{is} z_0$.

Monin-Obukhov length as a function of friction velocity and surface heat flux

Wind and thermodynamic profiles

$$\psi_{m}(\zeta) = \int_{0}^{\zeta} [1 - \phi_{m}(\zeta')] d\zeta' / \zeta'$$

$$= \begin{cases} \ln\left(\left(\frac{1 + x^{2}}{2}\right)\left(\frac{1 + x}{2}\right)^{2}\right) - 2\tan^{-1}x + \frac{\pi}{2}, & \text{for } -2 < \zeta < 0 \text{ (unstable)} \\ -\beta\zeta, & \text{for } 0 \le \zeta \text{ (stable)} \end{cases}$$

 $\psi_{h'}(\zeta) = \int_0^{\zeta} [1 - \phi_h(\zeta')] d\zeta' / \zeta'$

$$= \begin{cases} 2\ln\left(\frac{1+x^2}{2}\right), & \text{for } -2 < \zeta < 0 \text{ (unstable)} \\ -\beta\zeta, & \text{for } 0 \le \zeta \text{ (stable)} \end{cases}$$

Similarity Functions

$$(kz/u_*)(\partial u/\partial z) = \phi_m(\zeta)$$
$$(kz/\overline{\Theta}_*)(\partial \overline{\Theta}/\partial z) = \phi_h(\zeta)$$

$$K_{m} = -\overline{u'w'} / (\partial \overline{u}/\partial z) = u*^{2}/(\phi_{m}(\zeta) u*/kz) = ku*z / \phi_{m}(\zeta)$$

$$K_{h} = -\overline{w'\theta'} / (\partial \overline{\theta}/\partial z) = u*\theta*/(\phi_{h}(\zeta) \theta*/kz) = ku*z / \phi_{h}(\zeta)$$

$$D_{h}^{2} = (\sqrt{u}/dz) / (\sqrt{u}/dz)^{2}$$

$$Ri = (-d\overline{b}/dz) / (d\overline{u}/dz)^{2}$$
$$= (\overline{w'}b_{0}/K_{h}) / (\overline{u'w'}_{0}/K_{m})^{2}$$
$$= (B_{0}\phi_{h}(\zeta) / ku*z) / (u*^{2}\phi_{m}(\zeta) / ku*z))^{2}$$

$$= \zeta \phi_h / \phi_m^2$$

Figure 11.4 The Richardson number as a function of the M–O stability parameters. Equation (11.10) (—) is compared with Kansas data. [After Businger *et al.* (1971).]

Bulk aerodynamic coefficients for non-neutral conditions

$$C_{D} = \frac{k^{2}}{\left[\ln(z/z_{0}) - \psi_{m}(z/L)\right]^{2}}$$

$$C_{H} = \frac{k^{2}}{\left[\ln(z/z_{T0}) - \psi_{m}(z/L)\right]\left[\ln(z/z_{T0}) - \psi_{h}(z/L)\right]}$$

Figure 11.6 Variation of surface drag and heat transfer coefficients with surface roughness and the bulk Richardson number for (a) unstable conditions, and (b) near-neutral and stable conditions. [After Arya (1977).]