Note that in our notes, both log and ln indicate the natural log function. 1. (c) If $\zeta = z/L$, $du/dz = \phi_m(\zeta)u_*/kz$. At any midpoint level z_m , this equation can be solved for u_* in terms of known quantities. Use the lowest midpoint where the shear is largest. The roughness height z_0 can be deduced from the M-O formula for the wind profile: $u(z) = \frac{u_*}{k} \left[\log \left(\frac{z}{z_0} \right) - \Psi_m \left(\frac{z}{L} \right) \right].$ - 2. (a) In the formula for C_{DN} , the coefficient for u_{10} has units of $(m/s)^{-1}$. - (b) Charnock's formula is given on page 8 of the slides on M-O theory: http://www.inscc.utah.edu/~krueger/6220/Met5220_0915.pdf - (c) The neutral drag coefficient (C_{DN}) and the roughness length (z_0) are related by the formula given on page 3 of the summary slides on the surface layer: http://www.inscc.utah.edu/~krueger/6220/Met5220_0915%20SUMMARY.pdf - (d) See page 5 of the summary slides on the surface layer. Latent heat flux is the moisture (water vapor) flux X latent heat of evaporation (L), where $L = 2.5 \times 10^6$ J/kg. - (e) The formula for C_{qN} is just like the one for C_{DN} used in problem (c) except that z_0 is replaced by z_q . - (f) If the surface is neutrally stratified, the temperature lapse rate is dry adiabatic (dT/dz = -9.8 K/km). To estimate the water vapor mixing ratio (q) at 30 m, assume that q has a log profile up to 30 m, and use the known values of q at the ocean surface and at 10 m. The log profile for q is $$q(z) - q(0) = \frac{q_*}{k} \log(z/z_q),$$ where q_* is a surface-layer scale for q analogous to u_* . - 3. (a) See page 5 of the summary slides on the surface layer. You may assume that the potential temperature (θ) at 10 m is the temperature of 10 m air displaced adiabatically (dT/dz = -9.8 K/km) to the surface. Sensible heat flux is the potential temperature flux given on page 6 X specific heat at constant pressure (c_p) where $c_p = 1004 \text{ J/(kg K)}$. - (b) The formula for Ψ_h was not given in the slides, but it is in the Bretherton Lecture Notes, page 6.4. For $0 < \zeta$ (stable), $$\Psi_h = -\beta \zeta,$$ where $\beta = 5$ (given on page 6.2). There is a typo in the Bretherton notes: The second equation for Ψ_m on page 6.4 is actually for Ψ_h .