
Atm S 547    Boundary Layer Meteorology                                                                   Bretherton

Lecture13.  The stable BL (Garratt 6.2)

The stable nocturnal BL (NBL) has proved one of the more difficult types of BL to understand
and model. The boundary layer tends to be only 50-300 m deep. Turbulence tends to be intermittent
and gravity-wave like motions are often intermingled with turbulence, especially in the upper part
of the boundary layer. Radiative cooling in the air often has a comparable effect on the stratifica-
tion to the turbulence itself, reaching 1 K hour-1 or more in the lowest 50-100 m (by comparison,
a downward heat flux of H0 = -10 W m-2 out of a NBL h = 100 m would cool it at a rate dq/dt)turb
= H0/ρcph = 10-4 K s-1 = 0.3 K hr-1. Even the largest turbulent eddies do not span the entire BL
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so there is a tendency to layering of chemicals and aerosols within the BL, especially in the upper
part of the BL where turbulence is weakest. Wind profiles are much less well-mixed at night than
during the daytime convective BL.
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In an NBL, turbulence decreases sharply with height.
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An idealized NBL model

One illuminating theoretical idealization is a NBL of constant depth driven by surface cooling
only (Nieuwstadt 1984, J. Atmos. Sci., 41, 2202-2216).  In practice, this is most realistic when
winds are strong, producing sufficient turbulence to make substantial downward buoyancy fluxes
that are much larger than the radiative flux divergence across the NBL (which is typically less than
10 W m-2). We take the friction velocity u*, the geostrophic wind Ug (taken to be in the +x direc-
tion), and the Coriolis parameter f as given.  (In a practical application we would likely know the
surface roughness length z0, not u*, but we could use the solution below to relate these two param-
eters).  We assume:
(i) The entire BL, extending up to a fixed but unknown height h, is cooling at the same rate,
and maintains fixed vertical profiles of stratification and wind.
(ii) No turbulence at the top of the BL
(iii) Within the bulk of the BL (above the surface layer), the sink of TKE due to buoyancy fluxes
is assumed to be a fixed fraction Rf ≈ 0.2 of the shear production of TKE. The remaining fraction
(0.8) of the shear-produced TKE goes to turbulent dissipation, as transport is observed to be neg-
ligible. This is the same as saying that the flux Richardson number Rf = 0.2.
(iv) No radiative cooling within the BL
(v) The (unknown) Obuhkov length L  is assumed much smaller than the boundary layer depth.
Hence, the largest eddies have a depth which is order of L, since deeper eddies do not have enough
TKE to overcome the stratification by the scaling arguments we made in discussing the z-less scal-
ing at z>>L when we discussed Monin-Obhukov theory.
(vi) The eddies act as an unknown, height-dependent eddy viscosity and diffusivity Km = Kh as sug-
gested by Monin-Obuhkov theory. Hence the gradient Richardson number Ri = Rf, so is also 0.2
throughout the BL.
(vii) The BL is barotropic.

Scaling

Note that one could also use first-order closure on this problem instead of invoking assump-
tions (iii), (v) and (vi) about the eddies and their transports. This would give a largely similar an-
swer as long as the lengthscale in the first-order closure was on the order of L through most of the
boundary layer depth, and could also be used to relax the assumptions of steadiness, uniform cool-
ing rate, no radiative cooling, and no thermal wind.  However, the equations would not permit a
closed-form solution which displays the parametric dependences clearly. We first scale the
steady-state momentum equations, then use a clever approach to solve them.

Assumptions (i) and (ii) imply that if the (unknown) surface buoyancy flux is B0 < 0, then

B(z)  = w´b´  = B0(1 - z/h) (1)

The steady-state BL momentum equations are

-f(v - vg) = - ∂/∂z( u´w´) (2)

  f(u - ug) = - ∂/∂z( v´w´) (3)

If {} indicates ‘scale of’, the above assumptions imply:

{u´}  =  {v´}  =  {w´}  = u*

{Km}   =  {eddy velocity scale}{eddy lengthscale}  = u*L
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If {} indicates ‘scale of’, the above assumptions imply:

{u´}  =  {v´}  =  {w´}  = u*

{Km}   =  {eddy velocity scale}{eddy lengthscale}  = u*L
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⇒   {∂u/∂z} = {u´w´}/{Km}  = u*
2/u*L  = u*/L  (similarly for v)

{∂/∂z}  = h-1

To apply this scaling to (2)-(3), we differentiate them with respect to z, noting that the geostrophic
wind is constant with respect to height by assumption (vii):

-f∂v/∂z = -∂2/∂z2( u´w´) (4)

  f ∂u/∂z = - ∂2/∂z2( v´w´) (5)

Scaling the two sides of (4), we find

{f∂v/∂z} = fu*/L  =  {∂2/∂z2( u´w´)}  = u*
2/h2.

The same scaling holds for (5).  This implies a scaling for BL depth h:

h = γc(u*L/f)1/2 (6)

where γc is an as yet unknown proportionality constant.
-  13.4 -

Solution

Now we have understood the scaling of the equations, we solve them in nondimensional form.
This is a bit technical, so feel free to skip to the results. It is mathematically advantageous to com-
bine (4) and (5) into one nondimensional complex-valued equation.  Let the nondimensional
height, shear, momentum flux and eddy viscosity be:

ξ  = z/h, sv  =  (L/u*) ∂(u + iv)/∂z  and σ  =  (u´w´ + i v´w´)/u*
2, κm(ξ) = Km/u*L

Then (4) and (5) can be written:

sv  = iγc
-2 ∂2σ/∂ξ2 (7)

The boundary conditions come from the definition of friction velocity, and assumption (ii) that
stress vanish at the BL top. The surface momentum flux u*

2 is in the direction opposite the wind.
If the (unknown) surface cross-isobaric wind turning angle is α, then the two BCs are:

σ(0) = -eiα(1 + 0i)

σ(1) =  0  +  0i

The eddy viscosity assumption (vi) implies that σ = -κm(ξ)sv. Since the nondimensional eddy vis-
cosity is real, this is equivalent to requiring that the complex numbers σ and sv. have opposite phase
at all nondimensional heights sv.

The last condition we must enforce is (iii), that buoyant consumption of TKE is 0.2 of shear
production:

0.2  =  Rf  =  -B(z)/S(z)  =  -B0(1 - z/h)/(u´w´∂u/∂z + v´w´∂v/∂z)

       =  -B0(1 - ξ) / (u*
3/L)Re(σ*sv)   (* denotes complex conjugate)

Substituting (7) in for sv, noting that by definition of Obuhkov length, -B0 = u*
3/kL, and that the

eddy viscosity assumption implies that σ*sv is guaranteed to be real, we obtain the nonlinear ODE
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σ*∂2σ/∂ξ2 = iλ(1 - ξ), where λ  = γc
2/kRf is unknown (8)

This equation can be solved systematically by substituting σ = reiθ and obtaining a pair of ODEs
for r(ξ) and θ(ξ). However, an easier approach is to look for a trial solution in the form

σ(ξ) = −eiα(1 - ξ)a

This solution automatically obeys the boundary conditions and has the right form to match the RHS
of (10).  Substituting into (10), we find that this trial solution works if

a* + a - 2  = 1

a(a - 1) = iλ

Setting a = ar + iai, the first of these equations implies that ar = 3/2. From the second, we deduce
that

0  =  Re[a(a - 1)]  =  Re[(3/2 + iai)(1/2 + iai)]  =  3/4 - ai
2 ⇒ ai = 31/2/2

⇒ σ (ξ) = −eiα(1 - ξ)(3 + √3)/2,

λ  =  Im[a(a - 1)]  =  Im[(3/2 + iai)(1/2 + iai)]  =  2ai  =  31/2  = γc
2/kRf

⇒ γ c =  [31/2kRf]1/2 =  0.37   so h = 0.37(u*L/f)1/2,

⇒ sv  = iγc
-2 ∂2σ/∂ξ2  =  -ia(a-1)γc

-2eiα(1 - ξ)(-1 + i√3)/2

                                            = λγc
-2eiα(1 - ξ)(-1 + i√3)/2 is non-dim shear.

⇒ κ m(ξ)  =  -σ/sv = (1 - ξ)2γc
2/λ =  0.08(1 - ξ)2 is non-dim eddy viscosity

Hence, remarkably we have been able to deduce the BL depth. There is one shortcoming, which is
that L must still be deduced.  The deduced eddy viscosity decreases with height to zero at the BL
top, as we’d expect since turbulence is concentrated at the surface.  The shear profile can be inte-
grated from ξ = 1 (z = h) and the resulting velocity profile redimensionalized to obtain:

  =  -[u*h/L][2λγc
-2/(1 + i√3)] eiα(1 - ξ)(1 + i√3)/2

At the BL top, the velocity is Ug. At the surface, the velocity is zero. Hence, setting ξ = 0 on the
RHS, and noting that (1 + i√3)/2 = exp(iπ/3) and that  we have:

  =  -Ug  =  -[u*h/L][λγc
-2]exp(iα - iπ/3) (9)

For consistency the RHS must be real, and have the same magnitude as the LHS. Thus

α = π/3    (surface isobaric wind turning angle of 60 degrees) (10)

-2

u iv+
h
z

u iv+
h
0

-  13.5 -

Ug = [u*h/L][λγc ] = [u*h/L][1/k Rf] (11)

Summary of Results and Comparison to Observations

PBL depth h = γc(u*L/f)1/2 , where γc = (31/2kRf)1/2 =  0.37
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Wind profile (u + iv)/Ug  = 1 - (1 - z/h)(1 + i√3)/2

Note that h can be expressed in terms of the given parameters as:

h = 0.37(u*L/f)1/2 = 0.37(-u*
4/kB0f)1/2 = 0.37(-u*

4/0.12kf2Ug
2)1/2  = 1.7u*

2/fUg

A larger friction velocity, smaller geostrophic wind, or lower latitude will increase h.  Also note
that the wind profile is independent of the surface roughness (except in the surface layer z << L,
where the assumed eddy scale of L is no longer applicable and (12) is invalid). The surface isobaric
turning angle is 60 degrees, and the wind turns to geostrophic at the PBL top. We can solve (11)
for the

Obhukov length L = h (u*/Ug)(1/k Rf) = 12.5h(u*/Ug)

Substituting for h, this can also be written as

L = γc(u*L/f)1/2 (u*/Ug)(1/k Rf)

or

L = (u*
3/fUg

2)(γc/k Rf)2
-  13.6 -

This can be used to deduce the surface buoyancy flux, which by definition of L is:

Surface buoyancy flux B0 =  -u*
3/kL  =  -0.12fUg

2   (The constant is Rf/31/2)

Remarkably, the downward surface buoyancy flux is depends only on the geostrophic wind, and is
independent of surface roughness.

The NBL structure obtained from this approach is fairly realistic. For reasonable values of u*
(0.3 m s-1), Ug (10 m s-1), and  f = 10-4 s-1, we find that h = 0.37(u*L/f)1/2 = 150 m, close to ob-
served NBL depths of O(100 m). The Obhukov length L = 56 m, and L/h ≈ 0.38 << 1, consistent
with our original assumption that the vertical eddy mixing scale is much less than the PBL depth.
The the downward surface buoyancy flux B0 = 1.2×10-3 m2s-3 (i. e. a virtual heat flux (ρcpθR/g)B0
≈ -40 W m-2.) For Ug = 5 ms -1, the downward buoyancy flux would be only 25% as large as this.
These are not a large heat flux; atmospheric turbulence cannot keep the ground from cooling rap-
idly at night under clear skies unless the geostrophic wind is large. Instead, ground heat flux is the
major counterbalance to nocturnal radiative cooling. The surface energy budgets (e. g. over a dry
lake bed) nicely showed the fairly small role of surface heat fluxes in the nocturnal boundary layer.

The NBL stratification can also be deduced.

db/dz  = N2  =  Ri|du/dz|2  =  Ri[u*/L]2|sv|
2  =   (Ri/k2Rf2)(u*/L)2(1 - z/h)−1

Since Ri = Rf = 0.2, the constant is 1/k2Rf = 31. Integrating with respect to z, we obtain

b(z) - b(0) = -31h(u*/L)2 ln(1 - ξ)

This has a singularity at the BL top, which is a bit disturbing, but relates to the assumption that
there must be uniform cooling all the way to the BL top, even though there is very little turbulence
near the BL top.  The small turbulent diffusivity then requires a large gradient there.  For our ex-
ample values, N2 = 9×10-4 s-2 (2.6 K per 100 m) at the surface, rising with height. To get a more
stable BL than this, we must have diabatic (e. g. radiative) cooling within the BL.

A comparison of this theory to observations is shown in the figure on the next page. It should
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A comparison of this theory to observations is shown in the figure on the next page. It should
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Wind profile (u + iv)/Ug  = 1 - (1 - z/h)(1 + i√3)/2

Note that h can be expressed in terms of the given parameters as:

h = 0.37(u*L/f)1/2 = 0.37(-u*
4/kB0f)1/2 = 0.37(-u*

4/0.12kf2Ug
2)1/2  = 1.7u*

2/fUg

A larger friction velocity, smaller geostrophic wind, or lower latitude will increase h.  Also note
that the wind profile is independent of the surface roughness (except in the surface layer z << L,
where the assumed eddy scale of L is no longer applicable and (12) is invalid). The surface isobaric
turning angle is 60 degrees, and the wind turns to geostrophic at the PBL top. We can solve (11)
for the

Obhukov length L = h (u*/Ug)(1/k Rf) = 12.5h(u*/Ug)

Substituting for h, this can also be written as

L = γc(u*L/f)1/2 (u*/Ug)(1/k Rf)

or

L = (u*
3/fUg

2)(γc/k Rf)2

This can be used to deduce the surface buoyancy flux, which by definition of L is:

Surface buoyancy flux B0 =  -u*
3/kL  =  -0.12fUg

2   (The constant is Rf/31/2)

Remarkably, the downward surface buoyancy flux is depends only on the geostrophic wind, and is
independent of surface roughness.

The NBL structure obtained from this approach is fairly realistic. For reasonable values of u*
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≈ -40 W m-2.) For Ug = 5 ms -1, the downward buoyancy flux would be only 25% as large as this.
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The NBL stratification can also be deduced.

db/dz  = N2  =  Ri|du/dz|2  =  Ri[u*/L]2|sv|
2  =   (Ri/k2Rf2)(u*/L)2(1 - z/h)−1

Since Ri = Rf = 0.2, the constant is 1/k2Rf = 31. Integrating with respect to z, we obtain

b(z) - b(0) = -31h(u*/L)2 ln(1 - ξ)

This has a singularity at the BL top, which is a bit disturbing, but relates to the assumption that
there must be uniform cooling all the way to the BL top, even though there is very little turbulence
near the BL top.  The small turbulent diffusivity then requires a large gradient there.  For our ex-
ample values, N2 = 9×10-4 s-2 (2.6 K per 100 m) at the surface, rising with height. To get a more
stable BL than this, we must have diabatic (e. g. radiative) cooling within the BL.
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be noted that this case has a high geostrophic wind speed, so that the surface buoyancy flux is large
and the relative importance of radiative cooling in the NBL dynamics is smaller than usual.  The
comparison is quite good under these conditions.   The predicted linear increase of wind with
height in the BL and the concentration of the wind turning at the BL top are both observed.  The
observed wind turning of 30 is less than predicted, however. As predicted the strongest stratifica-
tion is near the BL top.   Normally, however, the NBL is most strongly stratified near the ground
where clear-air radiative cooling is strongest, as seen in other soundings in these notes.

The one step in applying this approach that we have not discussed is how to relate u* to Ug and
the surface roughness z0.  The velocity profile deduced above linearly approaches zero at the sur-
face, rather than  the log-linear behavior of M-O theory.  Empirical formulas, given on pp. 63-64

Comparison of steady NBL theory (top) with tower observations (bottom)
in a case of strong geostrophic wind.
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of Garratt, can be used to relate u* to Ug. They are given in terms of two functions A2(µ) and B2(µ)
of µ = h/L, and are typically expressed in coordinates parallel to the surface wind. Translating these
formulas into our notation, we find

Cg = (u*/ Ug)2  = k2/[(ln(h/z0) - A2)2 + B2
2] (12)

where for moderately stable conditions (0 < µ < 35), Garratt’s eqn (3.89) implies that

A2 = 1 - 0.38µ,  B2 = 4.5 + 0.3µ.

For our example, Cg = (u*/ Ug)2 = 0.0009, and µ = 2.7, so A2 = -0.0, B2 = 5.3. The surface roughness
that could give this NBL is found by solving  (13):

(ln(h/z0) - A2)2 + B2
2  = k2/Cg

⇒   ln(h/z0) = -A2 + [k2/Cg - B2
2]1/2 = 12.2   , z0 ≈ 0.001 m

(typical of flow over a smooth land surface such as sand). A change in z0 of several orders of mag-
nitude is necessary to move u* up or down by 50% for a given geostrophic wind speed.
-  13.8 -

KatabaticFlows

Sloping terrain has a large influence on stable boundary layers.  The cold dense air near the
surface is now accelerated by the downslope component b sin α of its buoyant acceleration (α is
the slope angle and b < 0 is the buoyancy of air within the BL relative to above-BL air at the same
height). Viewed in terrain-parallel coordinates, b sin α is like an effective pressure gradient force,
which is strongly height-dependent  since b depends on z.  In this sense, the slope acts similar to
a thermal wind (which would also be associated with a height dependent PGF) . Slopes of as little
as 2 in 1000 can have an impact on the BL scaling.

As the slope increases, or BL stability increases, the velocity profile is increasingly determined
by drag created by turbulent mixing with air above rather than surface drag. As for the NBL, the
BL is typically 10s to 100s of m thick. Over glaciers, katabatic winds often occur during the day
as well as during the night, since the net radiation balance of a high-albedo surface is negative even
during much of the day, and evaporative cooling due to surface snowmelt can also stabilize the air
near the surface. On the coast of Antarctica, persistent katabatic flows down from the interior ice-
caps can produce surface winds in excess of 50 m s-1.
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