Boundary Layer Meteorology ATMOS 5220/6220

09.15.2011

Surface Roughness and Logarithmic Sublayer

Aerodynamic bulk formula $(\tau = \rho)C_D \cdot U^2$

Drag Coefficient (C_D)

 $\tau = \rho \cdot C_D \cdot U^2 \text{ surface stress}$

 $(\overline{u'w'})_s = \frac{\tau}{\rho}$

In practice the drag coefficient is given usually with respect to the wind speed at z=10m and

with respect to the wind speed at z=10m and for neutral conditions (C_{DN10})

Typical values of the drag coefficient over the land are significantly larger than over the water

$$C_{D \text{ land}} \approx 7 \times 10^{-3}$$

 $C_{D \text{ water}} \approx 1 \times 10^{-3}$

Transfer Coefficients

 $\tau = \rho \cdot (\overline{u'w'})_s = \rho \cdot C_D \cdot U^2 \quad \text{bulk formula for momentum}$

$$\rho \cdot (\overline{w'a'})_s = \rho \cdot C_a \cdot U(z_r) \cdot \begin{bmatrix} a_0 - a(z_r) \end{bmatrix} \text{ bulk formula for scalar 'a'} \\ \text{transfer coefficient for moisture} \\ \rho \cdot (\overline{w'q'})_s = \rho \cdot C_E \cdot U(z_r) \cdot \begin{bmatrix} q_0 - q(z_r) \end{bmatrix} \text{ bulk formula for moisture} \\ \text{transfer coefficient for heat} \\ \rho \cdot (\overline{w'\theta'})_s = \rho \cdot C_H \cdot U(z_r) \cdot \begin{bmatrix} \theta_0 - \theta(z_r) \end{bmatrix} \text{ bulk formula for heat} \end{cases}$$

Velocity scales:

□ Friction velocity:

 $u_* = \left[\overline{u'w'}^2 + \overline{v'w'}^2\right]^{\frac{1}{4}} \quad u_*^2 = \left(\overline{u'w'}\right) \quad \text{For one-dimensional case}$

□ Convective velocity scale (Deardorff velocity):

$$w_* = \left[\frac{g \cdot z_i}{T_v} \overline{w' \theta_S'}\right]^{\frac{1}{3}}$$

- z_i height of capping inversion (PBL height)
- T_v virtual temperature
- ϑ potential temperture

Turbulent scales and similarity theory

Length scales:

- Monin-Obukhov length
- □ Stability parameter:
- □ Height of capping inversion (PBL height):
- Aerodynamic roughness length
- □ Height above the surface

$$L = \frac{-u_*^3}{k \cdot B_0} = \frac{-u_*^3}{w_*^3} \frac{z_i}{k} \qquad \qquad L = \frac{-u_*^3}{k \cdot \frac{g}{T_v} (\overline{w'\theta'})_s}$$
$$B_0 = \overline{w'b'_0} = \frac{-u_*^3}{k \cdot L}$$

Monin-Obukhov Length:

Height proportional to the height

- above the surface at which
- $\zeta=z/L$ buoyant production of turbulence
 - first equals mechanical (shear)

production of turbulence.

 z_i – height of capping inversion (PBL height)

 T_v – virtual temperature

Zi

 Z_0

Ζ

- θ potential temperature
- k von Karman constant (0.41)
- B_0 surface buoyancy flux

For unstable atmosphereL < 0, so $\zeta < 0$ For neutral atmosphereL $\rightarrow \infty$, so $\zeta = 0$ For stable atmosphereL > 0, so $\zeta > 0$

Universal similarity functions and eddy viscosities

Universal similarity functions relate the fluxes of momentum and sensible heat to their mean gradients

universal similarity
$$\phi_m(\varsigma) = \frac{k \cdot z}{u_*} \left(\frac{\partial u}{\partial z} \right)$$
 eddy viscosity for momentum $K_m = \frac{-\overline{u'w'}}{\frac{\partial u}{\partial z}} = \frac{u_*^2}{\frac{u_*\phi_m(\varsigma)}{k \cdot z}} = \frac{u_* \cdot k \cdot z}{\phi_m(\varsigma)}$
universal similarity $\phi_h(\varsigma) = \frac{k \cdot z}{\theta_*} \left(\frac{\partial \overline{\theta}}{\partial z} \right)$ eddy viscosity for heat $K_h = \frac{-\overline{u'\theta'}}{\frac{\partial \theta}{\partial z}} = \frac{u_*\theta_*}{\frac{\theta_*\phi_h(\varsigma)}{k \cdot z}} = \frac{u_* \cdot k \cdot z}{\phi_h(\varsigma)}$
 $\phi_m(\varsigma) < 1$ for unstable conditions $\phi_m(\varsigma) = 1$ for neutral conditions

 $\phi_m(\varsigma) > 1$ for stable conditions

Turbulent scales and similarity theory

In neutral or stable stratification $\phi_m = \phi_h (1/K_m = 1/K_h)$

Pressure perturbations do not affect the eddy transport of momentum relative to heat and other scalars $Pr_t=1$.

$\phi_h = \left\{ $	1	for	$\varsigma = 0$	(neutral)
	1+5 <i>5</i>	for	$0 \le \varsigma < 1$	(stable)

$$\phi_m = \begin{cases} 1 & for \quad \varsigma = 0 \quad (neutral) \\ 1 + 5\varsigma & for \quad 0 \le \varsigma < 1 \quad (stable) \end{cases}$$

In unstable stratification $\phi_h < \phi_m (K_h > K_m)$

Eddy diffusivity for scalars is more than for momentum (universal similarity function for momentum (Φ_m) is greater than for scalars (Φ_h)).

$$\phi_{m} = \left\{ \begin{bmatrix} 1 - 16\varsigma \end{bmatrix}^{-\frac{1}{4}} & \text{for } 0 \le \varsigma < 1 \quad (stable) \right\}$$
$$\phi_{h} = \left\{ \begin{bmatrix} 1 - 16\varsigma \end{bmatrix}^{-\frac{1}{2}} & \text{for } 0 \le \varsigma < 1 \quad (stable) \right\}$$

Turbulent scales and similarity theory

Wind and thermodynamic profiles

□ For all cases we can use one formula with stability correction function defined below:

$$\overline{U}(z) = \left(\frac{u_*}{k}\right) \cdot \left[\log\left(\frac{z}{z_0}\right) + \psi_M\left(\frac{z}{L}\right)\right] \qquad \Psi_{\mathsf{M}} = \text{stability correction function} \\ \mathsf{L} = \mathsf{Monin-Obukhov length} \quad \psi_M = \int_0^5 \left[1 - \phi_m(\varsigma')\right] d\varsigma' / \varsigma' \\ \psi_M = \begin{cases} \left(\frac{4.7 \cdot z}{L}\right) & \text{for } \frac{z}{L} > 0 \quad (stable) \\ 0 & \text{for } \frac{z}{L} = 0 \quad (neutral) \\ -2\ln\left[\frac{1+x}{2}\right] - \ln\left[\frac{1+x}{2}\right] - \ln\left[\frac{1+x^2}{2}\right] + 2\tan^{-1}(x) - \frac{\pi}{2} \quad \text{for } \frac{z}{L} < 0 \quad (unstable), \end{cases} \end{cases}$$

$$where: x = \left[1 - 15\frac{z}{L}\right]^{\frac{1}{4}}$$

