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ABSTRACT

The sensitivity to initial and boundary conditions of monthly mean tropical long-range forecasts (1–14
weeks) during Northern Hemisphere winter is studied with a numerical model. Five predictability experi-
ments with different combinations of initial conditions and prescribed ocean boundary conditions are
conducted in order to investigate the temporal and spatial characteristics of the perfect model forecast skill.
It is shown that initial conditions dominate a tropical forecast during the first 3 weeks and that they
influence a forecast for at least 8 weeks. The initial condition effect is strongest over the Eastern Hemi-
sphere and during years when the El Niño–Southern Oscillation (ENSO) phenomenon is weak. The
relatively long sensitivity to initial conditions is related to a complex combination of dynamic and thermo-
dynamic effects, and to positive internal feedbacks of large-scale convective anomalies. At lead times of
more than 3 weeks, boundary forcing is the main contributor to tropical predictability. This effect is
particularly strong over the Western Hemisphere and during ENSO. Using persisted instead of observed sea
surface temperatures leads to useful forecast results only over the Western Hemisphere and during ENSO.

1. Introduction

The skill of numerical weather prediction models in
forecasting the Tropics at short to long ranges has al-
ways tended to lag that in the midlatitudes (Kanamitsu
1985; Reynolds et al. 1994). Forecasting tropical varia-
tions is not only complicated by the lack of good ob-
servations, but also by the relative complexity of tropi-
cal dynamics, which are governed by different balances
than the extratropics. Outside the Tropics, quasigeo-
strophic theory provides a relatively simple theoretical
framework for an overall understanding of large-scale
motions. In the Tropics, however, this concept breaks
down, since pressure gradients and the Coriolis param-
eter are too small for motions to be in geostrophic bal-
ance. Other effects like friction and diabatic and latent
heating become important. The release of latent heat
associated with precipitation from convective cloud sys-
tems represents the dominant source of energy in the
Tropics. This process, however, is difficult to simulate,
and therefore represents a great challenge for our mod-
els.

The goal of this study is to characterize the spatial
and temporal structure of the predictability in the Trop-
ics and to find out how important the contributions of
initial conditions (ICs) and boundary conditions (BCs)
are for such predictability. On time scales of seasons or
longer, the Tropics are certainly dominated by the forc-
ing from the sea surface temperatures (SSTs) under-
neath (e.g., Shukla 1998). However, on subseasonal
time scales, which are the focus of this study, the rela-
tive role of initial and boundary conditions is more
complicated. Recently, Reichler and Roads (2003,
hereafter referred to as RR) found that in the Tropics,
initial conditions dominated a numerical forecast for
several weeks. This relatively long time scale was sur-
prising and prompted further analysis aimed at finding
the reasons for this large sensitivity to initial conditions.
As we will see, there appear to be two mechanisms by
which initial conditions are important for the tropical
forecasting problem: first, the intraseasonal or Mad-
den–Julian oscillation (MJO; Madden and Julian 1994),
and second, the slow response of the tropical atmo-
sphere to changes in boundary conditions. Predictabil-
ity issues related to the MJO are the subject of a com-
panion paper (Reichler and Roads 2005). In it, we in-
vestigate tropical predictability at periodicities of 30–60
days and find that initial conditions are crucial for pre-
dicting the MJO, although important responses to ex-
ternal SST forcing do exist.

The present paper is focused on the atmospheric pre-
dictability of monthly averages at lead times from 15
days to one season. This time scale has not received
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much attention in previous studies of tropical predict-
ability, which were focused almost exclusively on the
predictability of the intraseasonal oscillation. The prob-
lem of predicting monthly averages is influenced by
both interannual variability related to the El Niño–
Southern Oscillation (ENSO) phenomenon, and by in-
traseasonal variability related to the MJO. However,
since the MJO exhibits variability on a broad spectrum
with periods between 30 and 90 days, much of the MJO
variability is removed by taking monthly averages.

We used a model-based approach to answer our
questions and conducted five idealized ensemble ex-
periments with a complex atmospheric general circula-
tion model (AGCM). Each experiment was forced with
different combinations of initial and boundary condi-
tions to determine individual and cumulative contribu-
tions of each to the inherent predictability. Ensemble
forecasts were performed over many years to separate
unpredictable noisy components from the various sig-
nals. We analyzed predictability of four representative
atmospheric variables by measuring their so-called
“perfect model forecast skill.” Under this approach,
model output is verified against the output of a control
experiment using the same model (Buizza 1997; Ander-
son et al. 1999). This eliminated complications with
model-dependent errors and allowed us to focus exclu-
sively on the key questions of this study. Another ide-
alization of this study is the use of prescribed ocean
boundary conditions, which assumes that the future
evolution of the ocean is perfectly known at the time of
the forecasts. In real forecast situations, however, SSTs
are not known a priori. The generality of our results
depends also on the proper response of the model to
boundary forcing and in particular on the ratio of the
forced to the unforced variability. Therefore, this study
investigates a potentially hypothetical upper limit of
perfect model predictability, which is derived from spe-
cific variables of a specific model. In this study, we call
this simply “predictability.” Practical predictability is
likely to be lower than our predictability measure, since
observational data would be needed to verify an imper-
fect model and since predicted ocean data would be
needed to force an imperfect model.

In section 2, we briefly describe the model, experi-
ments, and analysis techniques used for this study. In
section 3, we present a short discussion of the model’s
climatology in comparison with observational data.
Section 4 discusses the temporally and spatially varying
character of tropical predictability using different initial
and boundary conditions. Section 5 investigates further
aspects of the long initial condition memory. Summary
and conclusions are provided in section 6.

2. Methodology

a. Model and experiments

The AGCM of this study was the National Centers
for Environmental Predictions (NCEP) seasonal fore-

casting model (e.g., RR; Kanamitsu et al. 2002b). We
used the model at T42 resolution with 28 vertical levels
to conduct five ensemble experiments. Each experi-
ment consisted of many 107-days-long continuous simu-
lations of the Northern Hemispheric winter season
from 15 December to the end of the following March.
The experiments were carried out in an ensemble
mode, with an ensemble size of 20 for the control simu-
lation “ICBC” and 10 for the other experiments. A
total of 22 winter seasons (1979–2000) were simulated,
so that each experiment consisted of a total of 220 (440)
continuous runs.

The members of one experiment and year were
forced with identical boundary conditions but were
started from slightly perturbed initial conditions. To
create those initial conditions, two continuous Atmo-
spheric Model Intercomparison Project (AMIP)-type
base runs with either observed (BASE-O) or climato-
logical (BASE-C) ocean boundary conditions were car-
ried out. For each year, the appropriate initial condi-
tions for the subsequent experiments were derived
from those base runs and perturbed by using the breed-
ing method (Toth and Kalnay 1997). The resulting
mean rms error between individual perturbed initial
conditions at the 850- (200) hPa level over the Tropics
was �3 (6) m s�1 for the u and v wind components, and
�14 (25) m for the geopotential height. The interested
reader is referred to RR for more specific information
about the implementation of the breeding method.

The five ensemble experiments of this study differed
only in the specification of their initial and boundary
conditions (see Table 1). The experiments were global,
and initial and boundary conditions were modified
globally. However, in the analysis presented here, only
the local response in the Tropics was examined. We
identify the five experiments by specific acronyms,
which indicate the quality of ICs and BCs used.

Experiment ICBC was forced with observed ocean
boundary conditions and was started from “anoma-
lous” initial conditions of BASE-O. Under the perfect
model approach, all experiments are verified against
ICBC. ICBC verified against itself is therefore similar
to a classical predictability experiment where the diver-
gence of solutions starting from slightly different initial
states is measured. The only difference is that ICBC
uses anomalous boundary forcing, which helps to sup-
port the anomalous initial state. Experiment “IC” used
the same perfect initial conditions as ICBC, but was
forced with climatological ocean and land boundary
conditions. This experiment was designed to measure
the effect of anomalous initial conditions, which are
created by, but which are not supported by, boundary
forcing. Experiment “BC” represents the complemen-
tary experiment to IC and was designed to study the
effects of boundary forcing alone. It was started from
randomly chosen “climatological” initial conditions
from BASE-C but was forced with the same perfect
boundary conditions as ICBC. Experiment “ICP” was
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again started from the same initial conditions as ICBC
but used persisted ocean boundary conditions. Per-
sisted SSTs means that the SST anomaly at day 0 of a
specific seasonal simulation is simply persisted around
the seasonal cycle during the whole integration. This is
a common alternative to more sophisticated ocean fore-
cast techniques (e.g., Mason et al. 1999; Roads et al.
2001), since at time scale of up to 3 months it is usually
more accurate than other forecast methods (e.g., God-
dard and Mason 2002). Finally, experiment “iBC” was
started from initial conditions by integrating ICBC for
one whole year. These initial conditions have com-
pletely lost their memory from the previous year, but
they are adjusted to the boundary forcing at the new
initialization time. In this respect, experiment iBC was
comparable to an ensemble of continuous AMIP-type
integrations, and to the current operational seasonal
forecasting methodology at the International Research
Institute (IRI). The motivation for iBC was to find out
how much predictability might be lost by excluding the
effects of perfect synoptic scales in the initial condi-
tions.

b. Data

The ocean boundary conditions for the five experi-
ments of this study were prescribed using observational
data. The SSTs came from the Met Office Global Ice
and Sea Surface Temperature (GISST) dataset for the
1950–81 period, and afterward, from Reynolds SSTs
(Reynolds and Smith 1994) with a weekly temporal
resolution. The sea ice data were taken from daily
NCEP–NCAR reanalysis (Kalnay et al. 1996; Kistler et
al. 2001). Climatological ocean boundary conditions
were derived by averaging the observed fields over the
50-yr period of 1950–99. The land boundary conditions
were either determined internally by the land surface
model of the AGCM or prescribed from the NCEP–
Department of Energy (DOE) AMIP-II reanalysis (R-
2; Kanamitsu et al. 2002a) by averaging from 1979 to
1998. For the verification of the model climatologies,
either NCEP–NCAR reanalysis or Climate Prediction
Center Merged Analysis of Precipitation (CMAP) data
(Xie and Arkin 1997) were used.

c. Calculation of forecast skill

We estimated the atmospheric predictability from
the forecast skill of four representative variables: the
velocity potential at 200 hPa (�200), the zonal wind at
850 hPa (U850), the temperature at 850 hPa (T850),
and the precipitation rate. Before the forecast skill was
calculated from the simulation time series, anomalies
were computed by removing the daily climatology of
the corresponding simulation. Next, the time series
were filtered in time by taking 31-day running averages.
This procedure has a low-pass characteristic with a cut-
off period of about 60 days. It therefore retained inter-
annual variability that is mostly related to ENSO, and
intraseasonal variability at periodicities of 60 days and
more, which is largely related to the tropical intrasea-
sonal oscillation. Since filtering of the beginning and
end of the seasonal time series would have required
additional data, the first and last 15 days were excluded
from our calculations.

The forecast skill between an experiment and the
control run ICBC was estimated in two ways. First, the
temporal correlation (TC) of the year-to-year time se-
ries for a certain lead time was used to construct maps
of forecast skill. Second, the spatial anomaly correla-
tion (AC) over the Tropics was calculated from data for
the same lead time and year, and then averages were
taken over the various years. Throughout this study, the
Tropics were defined as the region from 30°N to 30°S
latitude and from 0° to 360° longitude. To mimic real
forecast situations, the correlations were calculated be-
tween the 10-member ensemble mean of the individual
experiment under consideration and individual realiza-
tions of the control experiment ICBC. Since 20 mem-
bers of ICBC were available as verification, a more
robust skill estimate was obtained by selecting each
member of ICBC as verification and by averaging over
the individual outcomes. The verification of ICBC with
itself gave the upper bound of perfect model predict-
ability, since in this case boundary conditions were per-
fect, and initial conditions were almost perfect. Only
the small perturbations in the initial conditions led to a
divergence of the solutions for the various ensemble
members, which thus contributes to a decrease in pre-

TABLE 1. Boundary and initial conditions, ensemble size, and simulation period for each experiment of this study. Winter refers to
15 Dec–31 Mar of the following year, “rndm” indicates randomly chosen initial conditions, “clim” indicates climatological boundary
conditions, “cont” indicates continuous base run over all years, “obs” means observed (i.e., reanalysis-1), and “R-2” indicates NCEP–
DOE reanalysis-2.

Boundary conditions Initial conditions

Name Ocean Land Atmosphere Land Size Period Years

BASE-O Obs Model Obs 1/1/48 Obs 1/1/48 1 Cont 1948–2000
BASE-C Clim Model Obs 1/1/48 Obs 1/1/48 1 Cont 1948–2024
ICBC Obs Model BASE-O BASE-O 20 Winter 1979–2000
ICP Persisted Model BASE-O BASE-O 10 Winter 1979–2000
IC Clim R-2 clim BASE-O — 10 Winter 1979–2000
BC Obs Model BASE-C rndm BASE-C rndm 10 Winter 1979–2000
iBC Obs Model ICBC, 1-yr lag ICBC, 1-yr lag 10 Winter 1980–2001
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dictability over time. The appendix explains in more
detail the treatment of the data and the calculation of
the forecast skill.

The forecast base period was 1979–2000, but in some
of our analysis, the forecast skill was calculated only
over a subset of years. For example, strong ENSO
warm years were the winters of 1983, 1987, 1992, and
1998, and strong cold years were 1985, 1989, 1999, and
2000. Neutral to weak ENSO years were all of the other
14 yr from the 1979–2000 period.

3. Observed and simulated tropical climate

To find out how realistic the simulations of the
AGCM were, we describe in this section the climatol-
ogy and the interannual variability of the four variables
from the perfect experiment ICBC and compare them
with observational data. The analysis is focused on
January monthly means and covers the 22-yr period
from 1979 to 2000. For simulation ICBC, the climatol-
ogy was derived from the average of all 20 ensemble
members, and the interannual variability was calculated
for individual members and then averaged together.

In Fig. 1, the observed January climatologies are
compared with that from simulation ICBC. In general,
the structure and amplitude of all four simulated vari-
ables compared reasonably well with observations, in
particular for U850 and T850 (Fig. 1, middle). Differ-
ences between model and reanalysis were most notice-

able for �200 (Fig. 1, top). While the model simulated
three distinct centers of convective activity over the
Indian Ocean, the warm pool region, and South
America, the reanalysis did not show as clear a separa-
tion into three different regions. Moreover, the diver-
gent circulation in the model was too strong over the
date line and too weak over the Indian Ocean. Besides
model deficiencies, these discrepancies may be in part
attributable to the fact that the divergent circulation is
not really an observed quantity. It largely depends on
the convective parameterization scheme of the model
used, and the schemes are different in the reanalysis
model and the model of this study. Figure 1 (bottom)
compares the amount of simulated and observed tropi-
cal precipitation. This quantity is also strongly related
to convective activity. In this case, the observations
were derived from satellite and rain gauge data
(CMAP) and did not contain any model biases. The
largest model deficits existed over South America with
too much rainfall and over the Indian Ocean and Mari-
time Continent with too little rainfall. Over the Indian
Ocean, the model exhibited a double intertropical con-
vergence zone structure, a problem which is typical for
many AGCMs. Note, however, that the precipitation
rate near the date line was about right and that the
characteristic South Pacific convergence zone was
simulated quite well.

Figure 2 compares the interannual variability be-
tween observations (left) and simulation ICBC (right).

FIG. 1. The Jan monthly mean climatology (1979–2000) of velocity potential (in 106 m2 s�1) and
divergent winds (arrows) at 200 hPa, zonal winds (in m s�1) at 850 hPa, temperature (in °C) at 850 hPa,
and precipitation (in mm day�1): (left) the NCEP–NCAR reanalysis (CMAP for precipitation) and
(right) simulation ICBC.
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In general, the model showed a larger interannual vari-
ability than the observational data, in particular for
�200 (Fig. 2, top). For this quantity, the simulated vari-
ability was much larger than in reanalysis, especially
over the Indian Ocean and the warm pool region.
Again, it may well be that the reanalysis underesti-
mated the �200 variability, since the AGCM of this
study presumably uses a physically more realistic con-
vection scheme [relaxed Arakawa–Schubert (RAS)]
than the reanalysis [simplified Arakawa–Schubert
(SAS)]. This explanation is supported by the fact that
the differences between simulated and observed rain-
fall variability (Fig. 2, bottom) from CMAP data are
much smaller than for �200.

We were also interested to find out how much in-
traseasonal variability remained in the data after taking
monthly means. We depict in Fig. 3 the ratio between
the interannual and the intraseasonal variance (VIA/
VIS of �200 for both the reanalysis and experiment

ICBC. The intraseasonal variability is smaller by about
a factor of 2–4 than the interannual variability. As ex-
pected, the ratio is largest over the equatorial Pacific.
Again, the large-scale structures for reanalysis and
model data are very similar.

In summary, the model did not reproduce exactly
every aspect of the observed atmosphere, but it cap-
tured the basic patterns quite well. Therefore, we are
confident that this AGCM is an adequate tool for the
investigation of tropical low-frequency predictability.

4. Analysis of forecast skill

In the following section we examine the tropical
long-range forecast skill of monthly means from our
five model experiments. First, we show geographical
maps of temporal correlation at a fixed lead time inter-
val of 1 month, next we examine the spatial anomaly

FIG. 2. The Jan monthly mean interannual standard deviation of the four selected variables. See Fig.
1 for more details.

FIG. 3. The ratio between the interannual (VIA) and the intraseasonal variance (VIS) of
200-hPa velocity potential for (left) the reanalysis and (right) experiment ICBC.
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correlation over the tropical domain in its entire tem-
poral evolution, and finally we analyze the interannual
variations in forecast skill.

a. Spatial structure

Figure 4 shows the spatial structure of monthly mean
forecast skill over the Tropics during January as mea-
sured by the temporal correlations over all 22 yr. Since
the experiments were initialized on 15 December, the
January mean correlations correspond to roughly a 1
month lead time, or in other words to forecasts of week
3–6.

The correlations for ICBC (Fig. 4, top) give an esti-
mate for the upper bound of predictability at this lead
time and with this model, since both initial and bound-
ary conditions were perfect. The correlations for �200
(first column) are more evenly distributed than that of
the other fields, since velocity potential is a very
smoothly varying quantity. All four variables exhibit
maximum correlations in a relatively narrow band over
the Pacific cold tongue region, coinciding well with the
region of maximum ENSO related interannual SST
variability (not shown). In general, the correlations
over the Eastern Hemisphere (0°–180°E) are lower
than over the Western Hemisphere (0°–180°W). The
low-level temperatures show a large region with very

high correlations over the equatorial Pacific, presum-
ably due to the direct thermal effect of SST forcing on
this quantity.

The correlations for experiments BC and iBC are
presented in the next two rows. These two experiments
were forced with perfect boundary conditions but were
started from imperfect initial conditions. The difference
of their correlations to ICBC measures how much fore-
cast skill can be attributed to boundary forcing alone
and how much skill is lost by not having good initial
conditions. At first sight, the correlations are very simi-
lar to ICBC, indicating that the effects of boundary
forcing on monthly averaged forecast skill are over-
whelming at this lead time interval. A more careful
examination reveals that the correlations for each vari-
able are almost everywhere smaller than ICBC and that
the effects of poor initial conditions are noticeable. This
is also indicated by the area-averaged correlations in
the top left corners. Experiment BC has on average a
somewhat larger loss in skill than iBC, indicating that
the adjusted initial conditions of iBC are a better choice
than the climatological initial conditions of BC. It also
turns out that this loss in skill due to poor initial con-
ditions is most noticeable over regions, which are away
from the cold tongue region.

Experiment IC (fourth row), which was started from
perfect initial conditions but was forced with climato-

FIG. 4. The temporal correlations (1979–2000) of Jan monthly mean model output, corresponding to the forecast skill of weeks 3–6.
All experiments were verified against the perfect experiment ICBC. See Table 1 for definitions of ICBC, iBC, BC, IC, and ICP. The
numbers in the top left corner of each panel indicate the area-averaged correlation.
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logical boundary conditions, represents the comple-
mentary experiment to BC. The correlations for IC give
a good measure of how much long-range predictability
can be attributed to the effect of initial conditions alone
and how long time it takes for the wrong boundary
forcing to overcome the initial condition effects. It is
not surprising that the correlations for IC are much
lower than for ICBC, in particular over the equatorial
Pacific. It is interesting, however, that initial conditions
alone produce small but nontrivial forecast skill over
many regions and for all variables. This is particularly
evident for the upper-level velocity potential, but even
precipitation has small regions of predominately posi-
tive correlations. The correlations for IC are usually
larger over the warm pool region and over the Indian
Ocean, areas where experiment BC had the largest loss
in forecast skill. Conversely, this is true too. This sug-
gests that to first order the different predictability ef-
fects of initial and boundary conditions are linear and
that they can be simply added up to the full predict-
ability field of ICBC.

The patterns of predictability for experiment ICP,
which was forced with persisted SSTs and was started
from the same initial conditions as ICBC, are shown in
the bottom row. Even though the correlations are simi-
lar to ICBC, one can notice a spatially quite uniform
decrease in correlations, which can be ascribed to the
effect of having lower-quality boundary conditions.

The above results confirm earlier studies in that
boundary forcing is the main contributor to forecast
skill in the Tropics. However, we also found that initial
conditions have a small but nevertheless measurable
effect on tropical predictability at a lead time of 1
month. The fact that experiments with good boundary
conditions exhibited largest correlations over the cold
tongue region and the fact that the initial condition
effect was most noticeable away from this region sug-
gests that the boundary-forced predictability was
mostly related to interannual SST variations due to
ENSO. It is likely that the more subtle initial condition
effect was offset over this region by the dominating
boundary effect.

To investigate this assumption further, we repeated
the above calculation but included only years from neu-
tral to weak ENSO years in the calculation of the tem-
poral anomaly correlations (Fig. 5). In this case, bound-
ary effects from ENSO-related SST variability were
much weaker, so that the correlations were smaller.
This reduction in skill was most noticeable over the
cold tongue region, whereas other areas were far less
affected. As expected, by selecting only neutral to weak
ENSO years, the relative effect of initial conditions be-
came more important. This can most clearly be seen
over the warm pool region, where experiment IC had
higher correlations than experiments iBC or BC. The
results for experiment ICP indicate that persisting SSTs

FIG. 5. Same as in Fig. 4, but for weak to neutral ENSO years only.
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during years with weak ENSO forcing leads to a stron-
ger loss in forecast skill than when including all years.

b. Lead time evolution

Next, we investigate the spatial AC over the entire
tropical domain as a continuous function of lead time.
Figure 6 shows the evolution of the ACs in daily incre-
ments from day 16 (30 December) out to day 92 (16
March) for the five experiments and four variables. The
left side of Fig. 6 depicts ACs averaged over all 22 yr
(1979–2000), and the right side shows average ACs for
neutral to weak ENSO years. The ACs were calculated
for each time step, ensemble member, and year, and the
results from different years and members were aver-
aged using the Fisher z-transformation. The thin con-
tinuous lines in Fig. 6 depict the skill of a persistence
forecast, which is made simply by persisting day 0 of
ICBC for all lead times. Note that the correlations at
lead times of 32 days correspond to January monthly
means, which were discussed in the previous section for
the temporal correlations.

First, we discuss what one would expect theoretically
for the different cases. Experiments with “perfect” ini-
tial conditions (ICBC, IC, and ICP) should start with
correlations of close to one. The initial correlations are
not expected to be exactly one since 1) the initial con-
ditions were perturbed, and 2) monthly averages were
taken. Then, as the solutions for the individual en-
semble members diverge, the correlations should de-
crease at a rate that depends on the quality of the
boundary conditions. The decrease for IC should be
fastest since the anomalous initial conditions are unsup-
ported by the boundary forcing. The correlation for
ICBC, on the other hand, should be largest since the
boundary conditions are perfect. At longer lead times,
the correlations for ICBC should reach some asymp-
totic value that depends on the strength of the effects of
boundary forcing on forecast skill. The correlations for
ICP should decrease at some intermediate rate as the
error from using persisted boundary conditions in-
creases in time. For experiment BC, one would expect
zero skill at the beginning since it starts from wrong
initial conditions. Then, the correlations for BC should
increase and approach the same asymptotic value as
ICBC. Finally, experiment iBC should show a constant
skill in time equal to the asymptotic value of ICBC,
since in this case the atmosphere is at all times adjusted
to the boundary forcing. One may expect some tempo-
ral variations in this asymptotic value as the strength of
the boundary forced signal undergoes seasonal varia-
tions. In this context, the seasonal variations of the
ENSO signal, which typically peaks during early winter,
are important.

Figure 6 shows that the measured correlations for the
predictability experiments follow the expected behav-
ior quite well. The four variables show different levels
of basic skill, which is linked to the spatial and temporal
variability of their fields. The correlations from experi-

ment ICBC reflect the maximum potential predictabil-
ity with this model. At short lead times, the skill is high
because of the initial condition effect. After several
weeks, when the initial condition effect is presumably
close to zero, and when mostly boundary forcing affects
predictability, the correlations reach their asymptotic
value. The size of this value depends on the type of
variable and over which years the ACs were averaged.
During all years, �200 levels out at correlations of about
0.7, followed by U850 at 0.5 and by precipitation and
T850 at 0.4. Even during neutral to weak ENSO years,
this boundary condition–produced perfect model fore-
cast skill is rather high: 0.5 correlation for �200, 0.4 for
U850, and about 0.3 for T850 and precipitation. This
indicates that even weak ENSO events and non-ENSO-
related SST forcing lead to a rather high signal-to-noise
ratio for the tropical atmosphere. For the interpretation
of this result, one has to bear in mind that the sensitivity
of the model to external forcings may differ somewhat
from the response by the real atmosphere.

The correlations for iBC are generally higher than
that for BC, which is consistent with the different quali-
ties of their initial conditions. We recall that iBC comes
from fully adjusted initial conditions, and BC comes
from climatological initial conditions. The differences
to ICBC measure how much forecast skill is lost from
excluding the initial condition effect. Averaged over all
variables and time periods, it took about 50 days for
simulation iBC to approach the same level of skill as
ICBC. Experiment BC basically never reached the skill
of ICBC, not even at the longest lead times.

The correlations for experiment IC demonstrate how
much skill is lost when the boundary forcing does not
support anomalous initial conditions. There is a rapid
decrease in correlations during the first 30 days and a
slow asymptotic descent to zero skill thereafter. Zero
skill is reached at 60 days or later. An objective mea-
sure for the relative importance of initial and boundary
conditions is given by the time when the curves from IC
and BC intersect. This time scale indicates how long
initial conditions dominate the forecast result. It is on
the order of 3 weeks for these experiments and vari-
ables.

The correlations for the simple atmospheric persis-
tence forecasts are indicated by the thin continuous
curves in Fig. 6. During the first 40–60 days, they were
smaller than the correlations of experiment IC, indicat-
ing that not only simple atmospheric persistence is re-
sponsible for the initial condition effect. This demon-
strates the beneficial effects of a dynamical model on
forecast skill. It is not surprising that at longer lead
times the atmospheric persistence forecast had better
skill than experiment IC, but the overall correlations
were very small.

The temporal evolution of the skill for experiment
ICP is shown by the dashed–dotted curves. The added
uncertainty introduced by persisted SST anomalies
translates in all four variables to significant losses in

626 J O U R N A L O F C L I M A T E VOLUME 18



FIG. 6. The lead time evolution of the spatial anomaly correlation from low-pass-filtered
model output for the five experiments of this study and for four different variables: (left)
average ACs over all years and (right) averages over neutral to weak ENSO years. The
vertical axis denotes AC.
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skill as compared to the skill of experiment ICBC given
perfect SST forcing. Thus, even though the ocean has a
much longer time scale than the atmosphere, the as-
sumption that current SSTs will be an accurate forecast
of future oceanic conditions does not hold for the pur-
pose of long-range atmospheric predictions. As will be
discussed in the next section, there exist certain excep-
tions to this conclusion, since the persistent structure of
SSTs is in general a function of season, year, and region.

In Fig. 7, we present a year-to-year breakdown of the
spatial ACs of �200 over the tropical domain for Janu-
ary monthly means. This time period corresponds
roughly to forecasts of week 3–6. The years are ar-
ranged according to the correlations for experiment
ICBC (black bars). The rather large correlations of ex-
periments ICBC, iBC, and BC during ENSO years
demonstrate how important interannual SST variations
were during those years for the good overall skill. It is
interesting to note that the correlations for IC were
surprisingly large during some years—including years
when ENSO was in its cold period (e.g., 1989 and 1999).

5. Characteristics of the initial condition effect

In the previous section, we found that initial condi-
tions dominated tropical forecasts during the first 3
weeks and that even thereafter, initial conditions still
affected the forecast. This seemed to be particularly
strong over the Indian Ocean and during cold ENSO
years. In the following, we further investigate the ef-
fects of initial conditions on tropical forecasts.

Figure 8 shows composites of height–longitude cross
sections of the anomalous divergent circulation during
January. The composites were taken over the four cold
ENSO years. The plots represent meridional averages
from 0° to 20°S to capture the center of convective
activity during this time of the year. The patterns of
experiment ICBC (top) show the typical response to
ENSO cold events, with strong anomalous downward
motion over the date line and compensating motions
over most other areas. The patterns for IC (bottom)
show that the atmosphere over the Western Hemi-

sphere was, as expected, close to climatology, but over
the Eastern Hemisphere, the patterns still resembled
that of ICBC. This indicates that the atmosphere over
the east was more persistent than over the west. We
also investigated January composites from warm ENSO
years (not shown). Curiously, a similar delayed re-
sponse over the east to the now cooler-than-normal
SSTs could not be found. Instead, the circulation of
simulation IC during warm ENSO years was close to
climatology almost everywhere.

The asymmetric behavior of the initial condition ef-
fect between the Eastern and Western hemisphere, and
between cold and warm ENSO years, is further docu-
mented in Fig. 9. Shown here are the spatial anomaly
correlations of low-pass-filtered forecasts for the two
hemispheres and for the different phases of ENSO. The
correlations for experiment IC (dotted line) show that
the initial condition effect was stronger over the east
than over the west and that it was stronger during cold
than during warm ENSO years. During neutral to weak
ENSO years, initial conditions seemed to be more
equally important for the two hemispheres. During
ENSO years, the correlations for the persistence fore-
cast (thin continuous line) are generally higher over the
west than over the east. The correlations for experi-
ment ICP exhibit another interesting east–west asym-
metry. During strong ENSO years, the loss in predict-
ability from using persisted SSTs was quite small over
the west, but it was large over the east. This may be
related to the fact that ENSO-related SST anomalies
over the equatorial Pacific are usually well developed
during December and persist throughout the winter.
However, the evolution of similar anomalies over the
Indian Ocean lags that over the Pacific by about 1
month, so that persisting of SST anomalies from De-
cember leads to larger errors over the Indian Ocean in
the following months.

6. Summary and discussion

We examined the sensitivity of monthly mean tropi-
cal forecasts to initial and boundary conditions during

FIG. 7. The interannual variations of the spatial anomaly correlations at day 32, correspond-
ing to Jan monthly means or weeks 3–6 forecasts. The years of cold (warm) ENSO years are
shown by blue (red) numbers. Vertical axis denotes AC.
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the boreal winter season at lead times from 1 to 14
weeks. We used a complex numerical model to conduct
five predictability experiments with different combina-
tions of initial and boundary conditions. When the
model was forced with observed boundary conditions,
the climatological mean and the interannual variability
of the model atmosphere compared well with observa-
tional data. For each experiment, we examined the
forecast skill of four representative variables, which
were verified against the output of a control experiment
with the same model.

Initial conditions dominated a tropical forecast dur-
ing the first 3 weeks, and their influence lasted for at
least 8 weeks. The initial condition effect was notice-
able over all regions and during all years. It was stron-
gest over the Indian Ocean and the warm pool region
and during years with weak ENSO forcing. All four
variables showed similar sensitivities. Boundary forcing
was the main contributor to forecast skill at lead times
of more than 3 weeks. Over the Tropics, the average
anomaly correlation from boundary forcing alone was
about 0.7 for upper-level velocity potential, 0.5 for
lower-level winds, and 0.4 for lower-level temperatures
and precipitation. When only weak to neutral ENSO
years were included, the correlations were about 20%
lower. The best forecast skill existed over the Pacific
cold tongue region, which indicated the dominating ef-
fect of ENSO-related interannual SST variability on
atmospheric predictability. Using persisted instead of

observed SST boundary conditions started to have
negative effects on the forecast skill after 2–3 weeks
and led to considerable losses at longer lead times. All
regions were affected, but the most sensitive regions
were the Indian and the Atlantic Oceans. Persisted
SSTs led to minor losses in skill only over the Pacific
Ocean and during strong ENSO years.

A question remains as to what controls the initial
condition memory of the tropical atmosphere and what
sets the time scale of the response to boundary forcing.
In general, the adjustment to boundary forcing is de-
termined by a combination of dynamic as well as ther-
modynamic factors. Jin and Hoskins (1995) studied in
detail the transient dynamic response to equatorial
heating with a simple dry atmospheric model. They
found the following chain of events after a specified
equatorial heating was turned on: First, the heating rap-
idly induced local equatorial ascent and upper-
tropospheric divergence. Then, to the east of the heat-
ing-region fast-propagating Kelvin waves appeared,
and to the west and over the heating region, a slower
Rossby wave response developed. The waves emanated
from the heating region, and within 1 week an equiva-
lent barotropic Rossby wave train propagated from the
heating region into and through the winter hemisphere
middle latitudes. Within the second week, wavenum-
bers greater than 4 were refracted back into the Trop-
ics, where the waves finally interacted with the tropical
atmosphere. From this dynamical perspective, one can

FIG. 8. Height–longitude cross section of Jan mean anomalous circulation during ENSO
cold events, averaged from 0° to 20°S along the equator. Shown are the vertical velocity
(shading, in mm s�1) and the mass flux (vectors) from simulations (top) ICBC and (bot-
tom) IC.
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estimate that the tropical atmosphere adjusts to anoma-
lous diabatic heating within three weeks or so. This
time scale is in rather good agreement with the results
of our experiments.

The time scale of the initial condition effect in the
Tropics can be explained, in part, by thermodynamic
arguments. It is well known that the ENSO signature in
the tropical tropospheric mean temperature data is
lagged by about one to two seasons relative to the SSTs
over the Pacific cold tongue (e.g., Newell and Wu
1992). Yulaeva and Wallace (1994) showed that this

long adjustment time scale can be understood from a
passive radiative and thermodynamic response of the
coupled atmosphere–ocean system to SST forcing over
the equatorial eastern Pacific. The long time scale is
mainly due to the large heat capacity of the system,
which is composed of the heat capacities of the atmo-
sphere plus that of the topmost 10 m of the ocean. Our
experiments were forced with prescribed SSTs, so that
the effective heat capacity is solely determined by the
atmosphere. This helps to explain why the adjustment
time in our case is shorter than a season.

FIG. 9. Spatial anomaly correlation of low-pass-filtered 200-hPa velocity potential, calcu-
lated separately for the (left) Eastern (0°–180°) and (right) Western (180°–360°) Hemispheres
and for (top) warm, (middle) cold, and (bottom) neutral to weak ENSO years. See Table 1 for
definitions of ICBC, iBC, BC, IC, and ICP.

630 J O U R N A L O F C L I M A T E VOLUME 18



The initial condition effect may also be related to a
balanced mixture of thermodynamic and dynamic ef-
fects if, for example, MJO phenomenon have an impor-
tant influence. By taking monthly averages, however,
most of the MJO-related variability was suppressed in
the present study, so that those effects were likely to be
less important. This became evident from the relatively
small amount of intraseasonal variability. Again, we
found that the divergent circulation over the Eastern
Hemisphere was very persistent. This may be related to
an inherent positive feedback of tropical convection, in
the sense that preexisting convection can create favor-
able conditions for further convection. Over the West-
ern Hemisphere, this persistent behavior was much
smaller, maybe because direct ENSO-related diabatic
heating effects were more important there. This as-
sumption is consistent with the success of a simple per-
sistence forecast, which was found over this region dur-
ing ENSO. We also noticed that the persistence of the
tropical convection was much weaker during warm
ENSO years than during other years. This indicates
that cool SSTs could effectively reduce convection but
that warm SSTs did not immediately cause more con-
vection. There exist strong qualitative similarities be-
tween this result and a recent paper from Tompkins
(2001). In a comparable experimental design, he inves-
tigated the response of a cloud-resolving model to sud-
den changes of cold and warm SSTs. Even though this
was a somewhat different model, he found a surpris-
ingly similar result: Tropical convection died out
quickly over cool SSTs, but convection did not sponta-
neously flare up over warm SSTs. Instead, convection
propagated slowly toward the warm anomaly at a time
scale of several weeks. Tompkins (2001) concluded that
the slow advective adjustment time scale of water vapor
is key to the memory of tropical dynamical circulations.

Despite the similarities between this study and pre-
vious work, and despite the good climatology of the
model, we want to emphasize that this study was model
based. Therefore, one must be careful when interpret-
ing these results for the real atmosphere. In particular,
it is important to note that the initial condition effect
was closely related to convective activity and therefore
to the kind of cumulus convection parameterization
used. Since modern AGCMs are beginning to use the
same scheme as our model (RAS), they are all likely to
show similar features. Thus, independent of the ques-
tion of real or artifact, this underlines the need for good
tropical observations. Ultimately, this will not only im-
prove tropical forecasts, but should also have positive
impacts on extratropical long-range predictions.
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APPENDIX

Forecast Skill

Before the forecast skill was calculated, the model
data were treated in the following way: First, daily cli-
matological means were computed at each grid point by
averaging over R ensemble members and Y years of a
specific experiment, that is,

�P�t, x��R,Y �
1

RY 	
r�1

R

	
y�1

Y

Pr,y�t, x�, �A1�

where P
,y(t, x) represents any predicted model vari-
able for lead time t, location x, ensemble member r, and
year y. Next, anomalies P� � P � �P� were calculated
with respect to the daily climatology of each individual
experiment. We refer to these anomalies as unfiltered
data. Next, the anomalies were filtered in time by tak-
ing 31-day running means, that is,

P̃r,y�t, x� �
1

2M � 1 	
l��M

M

P�r,y�t � l, x�, �A2�

with M � 15. This process is simply denoted as monthly
averaging. The filtering was performed at each location,
separately for the simulations of each individual mem-
ber and year.

The forecast skill was estimated from correlations
between a prediction and a verification experiment. In
all cases, 10-member ensemble means of the experi-
ment under consideration were used as prediction time
series, that is,

P̃y �
1
R 	

r�1

R

P̃r,y, �A3�

and individual members of experiment ICBC were se-
lected as a verification experiment.

Using daily model output, two forms of correlation
measurements were used. First, we used the spatial
anomaly correlation (AC) over the tropical sector,
which was calculated as follows: Let P̃y be the predic-
tion of any experiment, and Ṽr,y be member r of the
filtered verification field from ICBC; then

ACr,y�t� �

�
X

�P̃y � Py��Ṽr,y � Vr,y� dX

��
X

�P̃y � Py�2 dX �
X

�Ṽr,y � Vr,y�2 dX

�A4�

defines the spatial AC at lead time t, during year y¸ and
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using verification member r. Here, dX is the differential
surface element of the tropical region X, and P and V
are the respective area averages of P̃ and Ṽ, for ex-
ample, P � 1/X XP̃ dX. Since R � 20 members of
experiment ICBC were available as verification mem-
bers, the AC calculations were repeated for each indi-
vidual member resulting in 20 different correlation es-
timates.

Averages of correlations were computed by first us-
ing a Fisher z transformation (e.g., Roads 1988) of the
individual correlations, that is,

Zr,y �
1
2

ln
�1 � ACr,y�

�1 � ACr,y�
, �A5�

and by then taking the arithmetic average, that is,

Zy �
1
R 	

r�1

R

Zr,y. �A6�

The final result was transformed back to regular cor-
relations, that is,

ACy �
exp�Zy� � 1
exp�Zy� � 1

. �A7�

When experiment ICBC was verified against itself,
again 10-member (instead of the possible 19 members)
ensemble means were taken from ICBC as prediction,
and another arbitrarily chosen member from ICBC was
taken as the verification time series.

The second measure of forecast skill was the tempo-
ral correlation (TC) between the year-to-year time se-
ries of the verification experiment and the prediction
experiment for the same lead time. The TCs are given
by

TCr�t, x� �

��P̃y �
1
Y �P̃y���Ṽy,r �

1
Y �Ṽy���

���P̃y �
1
Y �P̃y��2���Ṽy,r �

1
Y �Ṽy��2�

,

�A8�

where �· · ·� denotes a summation over the correspond-
ing years. As for the ACs, the individual Fisher z–trans-
formed TCs from using R verification members were
averaged, and the final result was transformed back to
regular correlations.

Variance ratios

The calculation of variance ratios was done in the
following way: Seasonal mean anomalies were calcu-
lated for each year and member, that is,

P̂r,y�x� �
1

T � M 	
t�M�2

T�M�2�1

P̃r,y�x, t�, �A9�

where T � 107 is the length of each forecast time series
in days, and M � 15. These seasonal mean anomalies

were used to calculate the interannual variance of sea-
sonal means, that is,

VIA�x� �
1

R * Y � 1 ��P̂r,y�x�2� �
1

R * Y �P̂r,y�x��2�,

�A10�

where �· · ·� denotes a summation from i � 0 to R * Y.
The intraseasonal variance was calculated from

VISr,y�x� �
1

T � M � 1 ��P̃r,y�x�2� �
1

T � M �P̃r,y�x��2�,

�A11�

where �· · ·� denotes a summation over t � M/2 to
T � M/2 – 1. The final VIS was taken from the average
over all members and years.
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