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ABSTRACT

It is suggested that the slow evolution of the tropical Madden–Julian oscillation (MJO) has the potential
to improve the predictability of tropical and extratropical circulation systems at lead times beyond 2 weeks.
In practice, however, the MJO phenomenon is extremely difficult to predict because of the lack of good
observations, problems with ocean forecasts, and well-known model deficiencies. In this study, the potential
skill in forecasting tropical intraseasonal variability is investigated by eliminating all those errors. This is
accomplished by conducting five ensemble predictability experiments with a complex general circulation
model and by verifying them under the perfect model assumption. The experiments are forced with dif-
ferent combinations of initial and boundary conditions to explore their sensitivity to uncertainties in those
conditions.

When “perfect” initial and boundary conditions are provided, the model produces a realistic climatology
and variability as compared to reanalysis, although the spectral peak of the simulated MJO is too broad. The
effect of initial conditions is noticeable out to about 40 days. The quality of the boundary conditions is
crucial at all lead times. The small but positive correlations at very long lead times are related to intrasea-
sonal variability of tropical sea surface temperatures (SSTs). When model, initial, and boundary conditions
are all perfect, the useful forecast skill of intraseasonal variability is about 4 weeks. Predictability is
insensitive to the El Niño–Southern Oscillation (ENSO) phenomenon, but it is enhanced during years when
the intraseasonal oscillation is more active.

The results provide evidence that the MJO must be understood as a coupled system. As a consequence,
it is concluded that further progress in the long-range predictability effort may require the use of fully
interactive ocean models.

1. Introduction

The intraseasonal or Madden–Julian oscillation
(MJO) is the dominant mode of low-frequency variabil-
ity in the tropical troposphere (e.g., Madden and Julian
1994). It consists of large-scale perturbations in the
tropical wind field that tend to propagate eastward at
typical periodicities between 30 and 60 days. The slow
evolution of the MJO relative to “weather” and its im-
portance for the tropical diabatic heating field suggest
that a realistic simulation of the oscillation may im-
prove long-range forecasts (between 2 weeks and one
season). Winkler et al. (2001) demonstrated with a lin-
ear model that the consideration of tropical heating,
which is associated with the MJO and other effects, can
produce predictability as far as 7 weeks ahead. Another

key aspect of the MJO is that it also impacts the vari-
ability and predictability of the extratropical circulation
(Ferranti et al. 1990; Higgins and Mo 1997; Jones et al.
2004).

Although better simulations of the MJO may have
the potential to improve long-range forecasts, the prac-
tical realization of this effect is hampered by several
factors. First of all, the MJO is a very sporadic phenom-
enon and is therefore difficult to predict. Furthermore,
cumulus convection, which seems to be a key aspect of
the MJO, is only crudely represented in current models.
The exact physical mechanisms of the MJO are also not
well understood. It is, for example, not exactly clear
what the role of air–sea interaction is for the simulation
of the MJO. The consequence is that current models
have notorious problems in simulating an adequate
MJO (e.g., Slingo et al. 1996). Additional complications
arise from large observational errors that are contained
in tropical analysis. Those errors, which are introduced
into the forecast through the initial conditions (ICs),
are related to the sparse observational network and the
lack of direct observations of divergence and diabatic
heating, which are important for the simulation of the
MJO (Hendon et al. 2000).
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Relatively few studies have examined the skill in
forecasting tropical intraseasonal variability with dy-
namical models. Chen and Alpert (1990), for example,
used the medium-range forecast (MRF) model and
found that the useful forecast limit of filtered upper-
level velocity potential is about 8 days. Very similar
results were found in studies by Lau and Chang (1992),
Boer (1995), and Jones et al. (2000). This short predict-
ability range does not really offer much hope for im-
proving long-range predictability, and it is also surpris-
ing when considering the intuitive notion that predict-
ability for a given process should be approximately
proportional to its lifetime (Van den Dool and Saha
1990).

The previous predictability studies had three impor-
tant things in common: First, forecasts were verified
against observations, so that well-known model defi-
ciencies led to a dramatic decrease in predictability.
Second, the forecasts were initialized from operational
analyses, which are known to be particularly problem-
atic in the Tropics. Third, predictability was understood
as a pure initial condition problem, and the possible
role of air–sea interaction for the MJO was largely ne-
glected. For example, the Dynamical Extended Range
Forecasts (DERF) experiments from the National Cen-
ters for Environmental Predictions (NCEP) used sea
surface temperatures (SSTs), which were damped to
climatology from observed initial states (Schemm et al.
1996). There is, however, growing evidence that in ad-
dition to atmospheric internal dynamics, thermody-
namic processes from the ocean interacting with the
atmosphere are important in sustaining the MJO (e.g.,
Flatau et al. 1997; Waliser et al. 1999b). Very recently,
Schubert and Wu (2001) and Wu et al. (2002) found
that prescribing observed weekly SSTs as boundary
conditions (BCs) to atmospheric general circulation
models (AGCMs) led to significant MJO-like re-
sponses. The modeled SST influence seemed to be
strongest over the Indian and western Pacific Oceans,
where the MJO accounted in some cases for more than
25% of the total intraseasonal variance.

Our goal in the present paper was to understand the
potential predictability properties of tropical intrasea-
sonal variability in a perfect predictability experiment
where the physical representation (model), initial, and
boundary conditions are known. This research was also
aimed at understanding how sensitive forecasts of tropi-
cal intraseasonal variability are to uncertainties in ini-
tial and boundary conditions. To this end, we con-
ducted five AGCM predictability experiments using
different combinations of initial and boundary condi-
tions.

In a companion paper (Reichler and Roads 2005,
hereafter referred to as RR), we investigate the pre-
dictability of monthly means in the Tropics. The main
difference between the two studies is variability on in-
terannual time scales, which is contained in monthly
means, but which has been eliminated in this study. For

monthly means, boundary conditions are the main con-
tributor to predictability, but we also found substantial
sensitivity to initial conditions. For forecasts of in-
traseasonal variability, initial conditions are of course
crucial, but how sensitive is the MJO to uncertainties in
the definition of boundary conditions? This question is
of practical importance since operational forecasts use
SST boundary conditions that may contain large errors,
either because simple methods like climatological or
persisted SSTs are used or because of the limitations of
the used ocean model.

Several idealized assumptions are made in this study.
First, to eliminate model induced errors, we use the
so-called perfect model assumption (Buizza 1997;
Anderson et al. 1999) and verify one forecast against
another forecast with the same model. Second, we
make hindcast experiments with prescribed ocean
boundary conditions, which assumes that the future
evolution of the ocean is known a priori. Third, we
measure predictability from a particular model, which
does not behave exactly like the real physical system.
For example, the model may over- or underestimate
the sensitivity of the atmosphere to boundary forcing.
In general, the potential perfect model predictability,
which we derive here, is likely to be higher than prac-
tical predictability, where observational data are used
to initialize and verify the model and where predicted
ocean data are used as to force the model. It also should
be mentioned here that the use of prescribed ocean
boundary conditions is somewhat problematic given the
growing body of evidence that the MJO in the real
atmosphere must be understood as a coupled process,
whereby the interaction of the atmosphere with the
ocean plays an important role.

This paper is structured as follows: Methodological
aspects are discussed in section 2. General features of
the simulated intraseasonal variability are described in
section 3. In section 4, the skill in forecasting intrasea-
sonal variability is examined for the different experi-
ments. In section 5, the impact of initial and boundary
conditions is described using a phase space representa-
tion. In section 6, the forced component of intrasea-
sonal variability and its relationship to the SSTs is ex-
amined in more detail. Summary and conclusions are
presented in section 7.

2. Methodology

Most of the methodological aspects of this study are
the same as in RR, so only a brief overview is given
here.

The AGCM of this study was the NCEP seasonal
forecasting model (SFM) with T42 horizontal resolu-
tion and 29 vertical sigma layers. The cumulus con-
vection parameterization of this model, which is a par-
ticularly crucial element for the simulation of tropical
intraseasonal variability, was the “relaxed Arakawa–
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Schubert” (RAS) scheme (Moorthi and Suarez 1992).
The model was used to conduct global simulations of 22
northern winter seasons (15 December–31 March) from
1979 to 2000. For each experiment and season, en-
sembles of 10–20 forecasts were produced. Simulations
for each experiment, year, and season were forced with
identically evolving boundary conditions but were
started from slightly different initial conditions. The ini-
tial conditions were derived from long continuous base
runs with the same model and were perturbed using the
breeding technique (Toth and Kalnay 1993; Toth and
Kalnay 1997).

Five experiments using different combinations of ini-
tial and boundary conditions were conducted. The ex-
periments are designated by specific acronyms, which
indicate the type of initial and boundary conditions.
The control experiment ICBC was forced with ob-
served weekly varying ocean boundary conditions. It
was initialized from a base run, which was also forced
with observed ocean boundary conditions. This is simi-
lar to using “observed” initial conditions under a real
forecast situation. By verifying ICBC against itself we
actually determined the upper limit of predictability,
which would be achieved if the real atmosphere be-
haved exactly like the model and if initial and boundary
conditions were almost perfectly known at the time of
the forecast. Two more experiments were forced with
the same boundary conditions as ICBC: experiment
BC, which was started from randomly chosen “clima-
tological” initial conditions, and experiment iBC, which
was started from “adjusted” initial conditions (for de-
tails, see RR). The remaining two experiments were
started from the same “perfect” initial conditions as
ICBC, but experiment IC was forced with climatologi-
cal, and ICP was forced with persisted ocean boundary
conditions.

Before analyzing the model data, they were treated
in the following way: The daily climatological mean
annual cycle of the corresponding experiment was first
removed. We refer to these anomalies as unfiltered
data. Next, the data were filtered in time by applying a
30–60-day bandpass filter. The filtering was performed
separately at each 107-day-long forecast time series, at
each grid point, over all members, and over all years.
The filtering was achieved by an iterative moving av-
erage procedure similar to that described by Waliser et
al. (1999a). First, a 25-day moving average filter was
applied four times to remove variability longer than 60
days. Each filtered time series became the input for the
next pass. The smoothed time series was subtracted
from the original data to remove variations of 60 days
and longer. Then, a 9-day moving average filter was
applied four times to remove variability of less than 30
days. The additional data at the beginning and end of
the time series were generated by fitting at each pass of
the moving average an autoregressive model of order 5
to the forecasts. However, since this procedure is prob-

lematic, we excluded in most of our analysis the first
and last 12 days of the time series.

The predictability of intraseasonal variability was de-
rived from the forecast skill of four variables: 200-hPa
velocity potential (�200) and 850-hPa zonal winds
(U850), both of which represent very common mea-
sures of MJO activity, as well as 850-hPa temperatures
(T850) and precipitation. Throughout most of this
study, the Tropics are defined as the equatorial region
between �30° latitude. In some of our analysis, how-
ever, we restrict our attention to meridional averages
between �10° latitude, which corresponds roughly to
the equatorial Rossby radius. This was done because
the MJO is an equatorially trapped phenomenon and
because the averaging reduces the dimensionality of the
problem. The forecast skill was measured from tempo-
ral correlations as well as from spatial anomaly corre-
lations over the tropical domain. The correlations were
calculated between 10-member ensemble means of the
experiment under consideration and individual realiza-
tions of the verifying control experiment ICBC. The
average correlation over each of the 20 members of
ICBC was taken as the final result. The averages were
calculated using the Fisher z-transformation (see RR
for more details on the calculation of the correlations).

3. Observed and simulated intraseasonal variability

In RR, we discussed the climatology and interannual
variability of the SFM model in the Tropics. We found
that key variables of the tropical circulation compare
well with observations. Here, we assess the ability of
the SFM model to simulate intraseasonal variability to
provide a context for the subsequent results, which are
based primarily on model data.

a. Spatial distribution

Figure 1 presents maps of the standard deviation of
intraseasonally filtered data from the model (left) and
from NCEP–National Center for Atmospheric Re-
search (NCAR) reanalysis (right) for the four variables
of this study. The model captures well the general pat-
terns and the amplitudes of the observed variability. In
particular the typical increased amount of intraseasonal
activity over the Eastern Hemisphere is reproduced
well by the model, as can be seen from �200, U850, and
the precipitation. The only difference is that the simu-
lated variance tends to be somewhat larger than the
observed one. Figure 1 (bottom) also shows the in-
traseasonal variability of the SSTs that was used to
force the experiments of this study. Except for a narrow
band over the equatorial cold tongue of the Pacific, the
intraseasonal SST energy tends to be largest over the
Indian Ocean. This corresponds well with the increased
amount of atmospheric intraseasonal energy over this
region.
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b. Total and externally forced variability

Next we investigate how much of the total intra-
seasonal variability is caused by the external SST
forcing. To this end, we separated the variance of
�200 into internal and external components as de-
scribed in the appendix. The intra- and interensemble
variances were calculated from intraseasonally filtered
daily data for lead times of 41 days or greater to
avoid influences from the initial conditions. Figure 2
shows the spatial distribution of the decomposition

for data from simulations ICBC and IC and com-
pares it with the total variance from NCEP–NCAR
reanalysis. For easier presentation, only data along
the equator were used. Again, the total variance
(Fig. 2a) of simulation ICBC is somewhat larger but
otherwise similar to the reanalysis in both magnitude
and spatial distribution. Simulation IC, which was
forced with climatological SSTs and therefore does not
have a forced component, had, almost everywhere, a
smaller amount of total variability than ICBC.

Figure 2 shows the ratio of external to total intrasea-

FIG. 1. The intraseasonal standard deviation of 30–60-day filtered velocity potential at 200 hPa (in 106 m2 s�1), zonal velocity at 850
hPa (in m s�1), temperature at 850 hPa (in K), and precipitation rate (in mm day�1). The fields were derived from (left) experiment
ICBC and (right) the NCEP–NCAR reanalysis. The bottom right panel shows the variability of the SSTs that were used to force the
model. Over land, it shows the variability of the skin temperatures from the NCEP–NCAR reanalysis (each in K).
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sonal variability for the two simulations. As expected
from the climatological boundary forcing, simulation
IC had virtually no forced variability. Simulation ICBC,
on the other hand, exhibited a ratio of external to total
variance of about 0.1, with a maximum over the Indian
Ocean region. This maximum coincides well with the
region of maximum intraseasonal SST activity shown in
Fig. 1. The ratio exhibited by simulation ICBC was
similar to the values found in the study by Wu et al.
(2002) from 10 different AGCMs over two full years.
Overall, this demonstrates that SST forcing affects at-
mospheric intraseasonal variability but also that this
effect is rather small.

c. Wavenumber–frequency spectra

We now describe the characteristics of the simulated
intraseasonal variability in terms of wavenumber–
frequency spectra of �200 from NCEP–NCAR reanaly-
sis and from experiments ICBC and IC. The spectra
were calculated individually for each member and year,
and averages were then taken for the final result. In the
reanalysis (Fig. 3a), the eastward-propagating wave-
number 1 was the largest component. This wavenumber
had a broad spectral peak centered on a 54-day period,
which is traditionally attributed to the MJO phenom-
enon. The secondary maximum at zero frequency cor-
responds to the seasonal mean since interannual vari-
ability was not removed from the data.

The spectrum from experiment ICBC (Fig. 3b) ex-
hibits more energy at zero frequencies than the reanaly-
sis. This larger amount of interannual variability is
probably related to different sensitivities to ENSO,
which are probably due to the different cumulus con-
vection parameterizations in the reanalysis model and
in the model used for this study. More relevant for this

study is that simulation ICBC also has a concentration
of energy in the eastward-propagating wavenumber-1
component, which is typical for the intraseasonal oscil-
lation. The main shortcoming of the model is that the
energy is less concentrated in a single wavenumber in
comparison to the reanalysis, and there are somewhat
higher frequencies, both of which are typical problems
for most AGCMs (e.g., Hayashi and Golder 1993;
Kuma 1994; Slingo et al. 1996). The spectrum for simu-

FIG. 2. (left) The total variance and (right) the ratio of external to total variance of filtered (30–60 days) 200-hPa
velocity potential at the equator (�0°), as a function of longitude. The data were derived from experiment ICBC
(continuous), experiment IC (dotted), and the NCEP–NCAR reanalysis (dashed). Units are 1012 m4 s�2.

FIG. 3. Wavenumber–frequency spectra of unfiltered 200-hPa
velocity potential from daily fields of the 1979–2000 period: from
(a) the NCEP–NCAR reanalysis, (b) experiment ICBC, and (c)
experiment IC. Units are 1012 m4 s�2 day. Contour levels are 50,
100, 200, 300, 400, 500, and 600. Shading indicates values greater
than 200.
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lation IC is shown in Fig. 3c. Simulation IC exhibits less
energy than ICBC at all frequencies, which must be a
consequence of the forcing with climatological bound-
ary conditions. Moreover, the spectral peak of IC is
located at an even higher frequency than for ICBC,
indicating that the intraseasonal oscillation of this
model is sensitive to the kind of boundary forcing.

d. Composite MJO

Further characteristics of the intraseasonal variability
in the reanalysis and model can be gathered from the
time–longitude representation of composite events
(Fig. 4). The composites were calculated by averaging
over the 10 strongest events based on the anomalies at
the base point at 150°E. The compositing was done for
both filtered �200 and U850. For �200 (Fig. 4, top),
both simulations show well-defined eastward-propagat-
ing signals that agree well with the reanalysis. The in-
traseasonal activity in the simulations tends to be spa-
tially more localized than in the reanalysis. Again, one
can see from the patterns that simulation IC has a
shorter periodicity than ICBC. For U850 (Fig. 4, bot-
tom), the eastward-propagating oscillations are present,
but they are less coherent, in particular over the Pacific
Ocean and for simulation IC.

Overall, these results demonstrate that the SFM is
able to perform reasonable simulations of the intrasea-
sonal oscillation when it is forced with observed SSTs.
The model shows a clear eastward-propagating signal
with realistic strength and periodicity. The main short-

coming is that the model is unable to simulate the domi-
nance of the intraseasonal oscillation at periods of 50
days. There is too much power at higher frequencies,
particularly when the model is forced with climatologi-
cal SSTs.

4. Forecast skill of intraseasonal variability

a. Lead time evolution

In this section, we examine the temporal evolution of
the perfect model forecast skill for the five experiments.
As before, we used daily fields of intraseasonally fil-
tered �200, U850, T850, and precipitation. The forecast
skill was measured from the spatial anomaly correlation
over the tropical domain (�30°) between the ensemble
mean of one experiment and individual members of the
reference experiment ICBC. Figure 5 presents for each
variable and experiment the evolution of the anomaly
correlation (AC) from day 12 (27 December) out to day
94 (19 March). Each curve represents the average over
440 individual measurements, resulting from the 20
verification members from ICBC and from the 22 win-
ter seasons (1979–2000).

The curves for simulation ICBC provide the upper
limit of predictability with this model, because both the
initial and the boundary conditions were perfect, except
for small perturbations in the initial conditions. The
curves for ICBC show the classical loss in predictability
as the solutions for the individual ensemble members
diverge with lead time. After 30–40 days or so, the de-

FIG. 4. Composite MJO events as a function of time and longitude of 30–60-day filtered (top) velocity potential at 200 hPa (in 106

m2 s�1) and (bottom) zonal wind at 850 hPa (in m s�1) along the equator (�30°). The data were derived from (left) reanalysis and from
one arbitrarily chosen member of experiments (middle) ICBC and (right) IC. The composites represent averages over the 10 time series
with the strongest anomalies at 150°E.
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terministic predictability of ICBC was completely lost,
and the correlations approached their asymptotic value.
This small but nevertheless nonzero correlation at
longer lead times must be due to the forced component
of intraseasonal variability and the resulting nonzero
signal-to-noise ratio. As we will show later, this is due
to the small amount of variance in the MJO band,
which is contained in the SST forcings.

The general shape of the curves for the different vari-
ables is very similar. The only major difference is the
basic level of skill, which is highest for �200 and lowest
for precipitation. This reflects the well-known differ-
ences in temporal and spatial variability for the differ-
ent fields. If a correlation of 0.4 is taken as the mini-
mum for useful skill, then the limit of predictability of
intraseasonal variability is reached at about 4 weeks for
�200, at about 3 weeks for U850 and T850, and practi-
cally never for precipitation.

Experiments IC and ICP were also started from per-

fect initial conditions, so that the correlations were also
high at the beginning. However, the correlations drop
off at a much faster rate than ICBC, presumably be-
cause of the lower quality of boundary conditions. For
experiment ICP, which was forced with persisted SSTs,
the range of useful predictability for �200 is about 1
week less than for ICBC. The correlations for experi-
ment IC, which had to adjust to climatological bound-
ary conditions, decayed even faster. Both experiments
reached zero skill at about a 40-day lead time. This
indicates how important the kind of boundary forcing is
for the simulation of intraseasonal variability.

Experiment BC was initialized from climatological
initial conditions, so that its correlations should be zero
at zero lead time. From experiment iBC, one would
expect a more or less constant skill in time since it was
initialized from adjusted initial conditions. The results
in Fig. 5 confirm that these assumptions are about right.
At longer lead times, the correlations of iBC and BC

FIG. 5. The lead time evolution of the spatial AC over the Tropics (�30°) for four different filtered (30–60 days)
model variables derived from the five experiments of this study. The results are averages over all 22 yr.
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approach the same asymptotic value as ICBC since all
three simulations were forced with the same observed
boundary conditions.

We were also interested in determining how sensitive
our results were with respect to interannual SST varia-
tions in relation to ENSO. The demonstration of a con-
nection between ENSO and the MJO has been contro-
versial. Some studies suggested that the activity of the
MJO was controlled by ENSO (e.g., Gutzler 1991; Fink
and Speth 1997), while others found little evidence for
such a link (e.g., Slingo et al. 1999; Hendon et al. 1999).
We repeated the calculation of the ACs by excluding
strong ENSO years from our calculations (not shown).
The ACs for the weak-to-neutral ENSO years were
very similar to those using all years, indicating that
ENSO-related boundary forcing has little effect on the
forecast skill of intraseasonal variability with our
model.

b. Interannual variations and relationship to activity

We now examine a year by year breakdown of fore-
cast skill for �200 to show how important initial and
boundary conditions were during individual years. As
before, the skill was measured from the spatial anomaly
correlations over the Tropics. We present for each year
the AC averaged over a short (days 12–40) and a long
(days 41–94) lead time interval. During the short lead
time interval, the deterministic predictability from the
initial conditions was high, and during the long lead

time interval, the forced intraseasonal variability was
dominating.

Figure 6 (top) presents the average ACs for the short
lead time interval for simulations that were started
from good initial conditions (ICBC, IC, and ICP). The
bars on the very right (labeled ALL) show the average
over all years. They confirm that on average, the fore-
cast skill for experiment IC was much smaller than that
for ICBC. However, it is surprising to see that during
some years (e.g., 1988 and 1996), the correlations from
IC were almost as good as those from ICBC. On the
other hand, during other years (e.g., 1983, 1989, and
1993), simulation IC had much smaller skill than ICBC.
This behavior suggests that the intraseasonal variability
can sometimes be a very robust feature that is strongly
determined by the initial conditions, while in other
years this variability can be extremely sensitive to the
additional uncertainties introduced by boundary forc-
ing.

Figure 7 (top) shows the year-to-year variations in
forecast skill during the long lead time interval (days
41–94). Only results for ICBC, iBC, and BC are pre-
sented, since those experiments were forced with per-
fect boundary conditions. At this long lead time, fore-
cast skill results mostly from the forced intraseasonal
response. This becomes clear from the bars on the very
right, which show that the correlations of all three ex-
periments averaged over all years are very similar.

The strong interannual variability in forecast skill ex-
hibited by the experiments raises the question as to

FIG. 6. The annual breakdown of (a) the ACs for experiments ICBC, IC, and ICP and (b) the spatiotemporal
variance (in 1012 m4 s�2) of experiment ICBC. The calculations are based on filtered 200-hPa velocity potential
over the tropical domain (�30°), and they represent temporal averages over the early lead time interval (days
12–40). The bars on the very right side (ALL) denote the mean correlations over all years.
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whether there exists a relationship to the activity of the
MJO during those years. The answer to this question
has been very controversial in the past. Lau and Chang
(1992), for example, found better skill; Boer (1995)
found no impact; and Chen et al. (1993) found even
lower skill when the MJO was more active. We now
examine this relationship for simulation ICBC. The
amount of intraseasonal activity during each year was
measured from the spatiotemporal variance of band-
pass-filtered �200. This quantity is shown in the bottom
panels of Figs. 6 and 7 for experiment ICBC and for the
two lead time intervals. As one can see, the relationship
between the year to year variations of forecast skill and
amount of intraseasonal activity are modestly positive
for our model. The correlations between skill and ac-
tivity are 0.55 at the short lead time interval and 0.48 at
the long lead time interval. Both correlations are sta-
tistically significant at the 95% error level.

c. Spatial distribution of forecast skill

Next, we discuss the spatial distribution of forecast
skill. To this end, we calculated the temporal correla-
tions (1979–2000) between a particular experiment and
experiment ICBC for a specific location and lead time.
These correlations were calculated at all grid points of
the tropical domain to construct predictability maps. As
before, we show temporal averages for a short (days
12–40) and a long (days 41–94) lead time interval. Fig-
ure 8 shows maps for the short lead time interval, dur-
ing which the initial condition effect was strong. Only
results from experiments ICBC, IC, and ICP are dis-

played since they were provided with good initial con-
ditions. As expected, the various maps exhibit quite
large differences in the basic levels of skill. However, a
common feature of all experiments and variables is that
their correlations are rather homogenously distributed
in space. Experiment ICBC tends to have somewhat
better forecast skill over the Eastern Hemisphere for
�200 and over the Western Hemisphere for T850 and
precipitation. The other experiments do not exhibit
such an east–west asymmetry. Predictability maps for
the long lead time interval and for experiments ICBC,
iBC, and BC are shown in Fig. 9. The maximum corre-
lations tend to occur along the equator. For �200, all
experiments tended to have higher correlations over
the Eastern than over the Western Hemisphere, indi-
cating that this effect is related to the common bound-
ary forcing. Note that a similar east–west asymmetry
was found before in the analysis of variability (Figs. 1
and 2), with areas of higher correlations coinciding with
areas of higher total and higher forced intraseasonal
variability.

5. Phase space representation

We now demonstrate further the synchronizing ef-
fects of initial and boundary conditions on the intrasea-
sonal variability. To this end, we examine the meridi-
onal average (�10°) of �200 along the equator, and we
focus on the wavenumber-1 component of its complex
Fourier expansion coefficients. The restriction to wave-
number 1 is meaningful since we have shown before

FIG. 7. Same as in Fig. 6, but for experiments ICBC, iBC, and BC, and for temporal averages over the late lead
time interval (days 41–94).
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that most of the intraseasonal energy of �200 is con-
tained in this spectral band. In fact, wavenumber 1 was
often taken as the defining parameter for studies of the
MJO (e.g., Lorenc 1984; Slingo and Madden 1991; Boer
1995). The advantage of this representation is that the
full �200 field is represented by just two variables, the
phase and magnitude of its wavenumber-1 component.
The phase represents the propagation of the intrasea-
sonal oscillation, and the magnitude its strength or ac-
tivity. The idea behind this approach is somewhat simi-
lar to the decomposition into two eigenmodes, which
was more widely used in previous studies of the in-
traseasonal oscillation (e.g., Lorenc 1984; Chen and
Alpert 1990; Ferranti et al. 1990; Jones et al. 2000).

The Fourier decomposition of intraseasonally fil-

tered �200 in the east–west direction along the equator
is defined by

�200��, t� � �
m��N

N

zm�t�eim�, �1�

where zm are complex Fourier expansion coefficients,
and m is the wavenumber. The complex wavenumber-1
coefficient can be also written in polar coordinates,

z1 � r exp�i��.

The magnitude r represents the strength of the oscilla-
tion, and the phase � represents the propagation.

From the previous discussion of interannual variabil-
ity of forecast skill, we have shown that during some

FIG. 8. The temporal correlations (1979–2000) for experiments ICBC, IC, and ICP of 30–60-day filtered data. Shown are averages
for lead times between 12 and 40 days. All experiments were verified against ICBC.

FIG. 9. Same as in Fig. 8, but for experiments ICBC, iBC, and BC and for lead times between days 41 and 94.
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years the initial condition was important and that dur-
ing other years the boundary condition effect was im-
portant. In the following, we use the phase space rep-
resentation to examine the solutions of the various
simulations during two particular years. Figure 10
shows the ensemble mean evolution of the wavenum-
ber-1 Fourier coefficient of the filtered �200 in the com-
plex plane. The magnitude r is represented by the dis-
tance to the origin, and the phase � is represented by
the angle from the positive x axis. Time is indicated by
different colors. The magnitudes represent anomalies
with respect to the 1979–2000 climatology.

Consider first the situation for 1992 (Fig. 10, top), a
year during which the forced intraseasonal variability
was important. The similarity of the trajectories gives
an estimate for the similarity of the forecasts. At short
lead times (0–20 days; red and orange colors), the tra-
jectories of ICBC, IC, and ICP are similar because of
the initial condition effect. On the other hand, experi-
ment IC had regular intraseasonal oscillations, but the
magnitude decreased gradually—either because of the
decorrelation of individual member solutions or be-
cause of a decay of the amplitudes with increasing lag.
The trajectory of ICP was quite distorted at longer lead
times (green and blue colors), again indicating that the
coherence between members was lost or that the am-
plitudes decayed. Experiment ICBC exhibited a regime
shift at about day 30 (yellow color), and then continued
with strong regular oscillations. After the shift, the tra-
jectories of iBC and BC were very similar in phase as

well as in magnitude to ICBC. This synchronous behav-
ior must be due to the common forced variability com-
ponent of all three experiments.

The bottom graphs of Fig. 10 represent the evolution
of intraseasonally varying �200 during the year 1996.
From Figs. 6 and 7, one can see that during this year the
initial condition as well as the boundary-forced forecast
skill (both with about 0.5 correlation) was modestly
high. At short leads (red colors), the trajectories of
ICBC, IC, and ICP agreed quite well. At longer leads,
IC continued to oscillate quite regularly and performed
a total of about 3.5 oscillations. Again, the trajectory of
simulation ICBC exhibited a discontinuity at about day
20 (yellow color), and at longer leads (greenish and
bluish colors), the trajectories of ICBC, iBC, and BC
were reasonably similar.

6. Forced intraseasonal variability

It was shown before that SST forcing influences the
atmosphere on intraseasonal time scales and that it pro-
duces a forecast skill of about 0.2 correlation at long
lead times. The strength of this effect was highly vari-
able from year to year, and it was particularly notice-
able during the years 1990, 1992, 1996, and 2000. In this
section, we further investigate the relationship between
SST forcing, intraseasonal variability, and long-lead
forecast skill.

FIG. 10. The trajectory of the MJO in phase space for the different experiments during northern winter (a) 1992 and (b) 1996. Shown
is the evolution of the complex wavenumber-1 coefficient of the 30–60-day filtered 200-hPa velocity potential along the equator (�10°).
The distance from the center denotes the magnitude in 106 m2 s�1 (see ICP). The angle from the positive x axis represents the phase.
Time is shown in colors and by numbers (for ICBC 1992). The colors change every 5 days, starting with red (days 0–4) and ending with
purple (days 105–107). The indicated geographical locations mark the approximate center of maximum convection for a given phase
angle.
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a. Tropical SST variability

We first show the spectral energy distribution of the
SSTs that were used to force the experiments of this
study. The goal is to find out whether there exist any
links between SST variability and forecast skill. Figure
11 shows for each simulation year the amount of SST
energy that is contained in the intraseasonal frequency
band (54 days). Before the spectra were computed, the
annual mean as well as the annual and semiannual sea-
sonal cycle was removed from the SST data. In space,
the spectra were calculated along the equator for all
latitude bands between 10°N and 10°S, and the final
result was averaged over those latitudes. Figure 11
shows intraseasonal energy in the SST data that varies
from year to year. From previous studies, it is known
that tropical SSTs have an intraseasonal peak (Krish-
namurti et al. 1988), which can amount to local SST
variations of 1.0°C and more (Weller and Anderson
1996). This peak is coherent with observed changes in
surface heat fluxes and SSTs that occur during the pas-
sage of an MJO (e.g., Zhang 1996; Flatau et al. 1997;
Maloney and Kiehl 2002).

The SSTs exhibit a clear energy maximum during the
year 1992, and, incidentally, during the same year, the
long-lead forecast skill and the amount of atmospheric
intraseasonal variability were large too. This can be
seen from a comparison with Fig. 7. The correlation
between the intraseasonal SST energy (Fig. 11) and the
forecast skill for ICBC (top of Fig. 7) is 0.58. This is
relatively high, in particular when considering that such
a relationship is not necessarily linear and that other
factors beside SST forcing determine the correlations as
well. We think that that SST patterns with a similar
spatiotemporal structure as the intraseasonal oscillation
are particularly effective in forcing atmospheric in-
traseasonal variability, much in the sense of a resonant
forcing of a dynamical system. This can explain the
relatively good relationship between the amount of SST
variability, atmospheric variability, and long-lead fore-
cast skill in the intraseasonal band.

b. Case study

Let us examine the situation for 1992 in more detail.
Figure 12 presents a comparison of unfiltered tropical
SST anomalies (shading) and associated filtered �200
(thick contours) from reanalysis (Fig. 12a) and simula-
tion ICBC (Fig. 12b). The SSTs are identical in both
panels and represent latitudinal averages from 10°N to
10°S. They exhibit the typical signature of an ENSO
warm event, with warmer waters over the Pacific and
colder waters over the warm pool region. As expected,
there was strong intraseasonal variability on top of this
mean pattern.

The overlaid �200 for the reanalysis (Fig. 12a) re-
veals a good relationship between the intraseasonal ac-
tivities of the ocean and the atmosphere: the ocean was
warmer before the period of active convection (nega-
tive �200) and cooler after it. The patterns of �200 for
simulation ICBC (Fig. 12b) also show a distinctive in-
traseasonal activity, which seems to be shifted by about
one-quarter cycle toward earlier times with respect to
the reanalysis. This leads to a more direct relationship
between ocean and atmosphere, in the sense that
anomalous rising motions tend to coincide directly with
warm or neutral SST anomalies, and sinking motions
coincide with cold SST anomalies. This suggests that
SST forcing with proper frequencies is able to phase
lock the simulated intraseasonal oscillation into its own
cycle.

The intraseasonal SST variations over the warm pool
region amount only to 0.6°C or so. It is curious that
such small temperature variations control the intrasea-
sonal activity in the model. To explain this behavior, it
is important to understand that the atmospheric re-
sponse to tropical SSTs is strongly nonlinear. Observa-
tions show that SSTs above 26–27°C are required for
large-scale deep convection to occur and that little con-
vective activity takes place over SSTs colder than that
(e.g., Graham and Barnett 1987). Since the mean SSTs
over the Indian Ocean during January were close to the
27°C threshold (not shown), even small SST anomalies

FIG. 11. The spectral energy of the SSTs (in K2 day) that were used to force the experiments of this study. The
SST data were taken from the equatorial strip (�10°). They were spectrally filtered in space and time to consider
only energies at periods of 54 days and eastward-traveling wavenumbers from 0 to 3.
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may have been very effective in controlling the convec-
tive activity.

c. SST–MJO relationship

We now establish a more general relationship be-
tween SST forcing and intraseasonal activity by using
data from many events. Figure 13 shows composites of
strong MJO events (thick contours) for simulation
ICBC (top) and for reanalysis (bottom). Again, the
composites were formed by selecting the n strongest
MJO events from the intraseasonally filtered �200 over
a specific base point. Taking into account the different
ensemble sizes, n was 20 for the reanalysis and 200 for
ICBC. Two base points were selected to capture differ-
ent stages of the oscillation: one over the Indian Ocean
(90°E), and one over the warm pool (150°E). All panels
show strong intraseasonal SST variability, indicating
again that intraseasonal SST variability was connected
to a similar variability in the atmosphere. In the model
(top), convection was enhanced (suppressed) by warm
(cold) SST anomalies almost directly underneath. The
associated SSTs for the reanalysis (bottom) were more
noisy because of the smaller sample size. In this case,
the regions of warmest SST anomalies tended to lead
the convective anomalies by several days.

To better quantify the relationship between atmo-
spheric and oceanic intraseasonal activity, we calcu-
lated cross correlations between the composite events
and associated SST anomalies for different phase lags
(Fig. 14). Temporal correlations were computed be-
tween the filtered �200 time series at a fixed grid point
and the SST anomaly time series at different locations

to the east or west of this point. Results from all grid
points along the equator were averaged.

For the reanalysis (Fig. 14, continuous lines), the in-
traseasonal oscillation had the strongest negative cor-
relations with SSTs at a phase lag of about 60° to the
east or about 7 days. The two different base points led
to very similar results. The correlations are negative
since cool (negative) SST anomalies tend to suppress
convection, which leads to positive �200 anomalies (up-
per-level convergence). The 60° phase shift agrees well
with the general picture seen before: SSTs are higher
before the period of active convection and lower after
it. This is also in line with observational findings. For
example, Flatau et al. (1997) showed that to the east of
the convective region, increased shortwave radiation
fluxes increased the SSTs, whereas in the vicinity and to
the west of this region, cloud shielding and strong air–
sea heat fluxes cooled the SSTs.

For simulation ICBC (Fig. 14, dashed lines), maxi-
mum negative correlations occur for SST anomalies at
a phase lag of only about 10°E. This much smaller east-
ward shift reflects the different MJO–SST relationship
between model and nature. In nature, intraseasonal
SST variations are mostly caused by the atmosphere as
described above. In our model, however, prescribed
SSTs force the atmosphere above, so that the simulated
intraseasonal oscillation tended to be almost in phase
with the SST. This is in line with results by Wu et al.
(2002), who found that simulated and observed �200
anomalies tend to be in quadrature with the simulations
leading the observed anomalies by about 10 days.

7. Summary and conclusions

This study investigated the predictability of the tropi-
cal intraseasonal oscillation and its sensitivity to initial
conditions and boundary forcing. Five types of AGCM
experiments were conducted with the NCEP SFM, each
with different combinations of initial and boundary
conditions. The experiments simulated the state of the
northern winter atmosphere over the 22-yr-long period
from 1979 to 2000 with 10–20 ensemble members.

When the model was forced with observed weekly
SSTs, it exhibited realistic intraseasonal variability.
About 10% of it was accounted for by the thermody-
namic forcing from the ocean. The model simulated the
typical features of the MJO, but the spectral peak of the
oscillation was too broad. When forced with climato-
logical SSTs, this peak shifted toward higher frequen-
cies, indicating that the simulation of the oscillation was
sensitive to boundary forcing.

A predictability estimate of intraseasonal variability
was derived from the perfect model forecast skill of
four representative variables. The effects of initial con-
ditions on the simulation of the intraseasonal variability
lasted for about 40 days. With “perfect” initial and
boundary conditions, the useful forecast range for �200

FIG. 12. The temporal evolution of the unfiltered SST anoma-
lies (in K) along the equator (�10°) during the year 1992. The
black contour lines show the 30–60-day filtered 200-hPa velocity
potential for the corresponding time and location from (a) the
NCEP–NCAR reanalysis and (b) experiment ICBC.
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FIG. 13. Composite 200-hPa velocity potential (thick contours) and the associated SST anomalies (shading) along
the equator (�10°) for (top) simulation ICBC and (bottom) reanalysis. Shown are composites of the 200 (ICBC)
or 10 (reanalysis) strongest MJO events, as given by the strength of negative anomalies of 30–60-day filtered �200
at the base point [(left) 90° and (right) 150°E]. The contour lines are from –6 to 6 	 106 m2 s�1 in intervals of 2.
Negative values are dashed. The SST anomalies were standardized by their local interannual standard deviation
and are unitless.

FIG. 14. The temporal correlation between the composite �200 and SST events shown in Fig. 13 for base points
at (a) 90° and (b) 150°E. The ordinate denotes temporal correlation, and abscissa denotes west- or eastward shift
of SSTs in degrees longitude.
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averaged out to 4 weeks. A recent study by Waliser et
al. (2003) came to a very similar estimate of the poten-
tial predictability limit of the MJO using a different
model and verification strategy. The 4-week range is
much longer than the 8-day limit found from previous
studies for the same variable. The main reason for this
difference is our perfect model setting, where we com-
pletely eliminated model errors, ocean forecast errors,
and observational errors in the initial conditions. Given
the importance of tropical variability for global weather
and climate, our results suggest that current long-range
forecasting systems could be improved if the MJO
could be represented better in current models.

The quality of boundary conditions was crucial for
the simulation of intraseasonal variability. When using
persisted instead of observed SSTs, the range of useful
predictability was reduced to about 3 weeks, and with
climatological SSTs, it was less than 10 days. We found
that the predictability of intraseasonal variability was
higher when the oscillation was more active, but we
found no evidence for an influence of interannual SST
variability in relation to ENSO. Even at very long lead
times, the forcing with observed boundary conditions
led to some forecast skill, which was related to the ex-
ternally forced variability. Boundary forcing with a
similar spatiotemporal structure as the MJO was par-
ticularly effective in influencing atmospheric intrasea-
sonal variability: during years when the SST energy in
the intraseasonal band was high, the forced intrasea-
sonal response of the atmosphere was high and so was
the forecast skill.

In a case study, we showed that strong intraseasonal
variability in the tropical SST field phase locked the
atmosphere into its own cycle. A more general relation-
ship between atmospheric and oceanic intraseasonal
variability was derived from examining many strong
MJO events. When prescribed SST anomalies forced
the intraseasonal variability, the atmosphere and the
ocean tended to be in phase, with enhanced convection
almost directly above positive SST anomalies. In na-
ture, on the other hand, intraseasonal SST anomalies
are mostly caused by the atmosphere. The consequence
is a phase lag between both, in the sense that SSTs are
higher before the period of active convection and lower
after it. These different relationships point to a di-
lemma: The forced predictability, which was found in
this study from prescribing weekly SSTs, does not imply
the same predictability under real conditions. The
problem is that SSTs themselves are to a large extent
the product of the unknown atmospheric forcing. Nev-
ertheless, the sensitivity of the MJO to prescribed
boundary conditions may still imply real predictability,
for example, through preexisting persistent SST
anomalies.

Overall, this study suggests that practical forecast
skill of tropical intraseasonal variability could be im-
proved if the MJO modeling problem could be solved

and if more realistic initial and boundary conditions
could be obtained. Our results provided indirect evi-
dence for the coupled nature of the MJO, which is in-
consistent with the use of prescribed low-frequency
ocean boundary conditions. Further progress in the
long-range predictability effort may therefore be
achieved with the use of fully coupled models.
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APPENDIX

Total and External Variance

In some of our analysis, we decomposed the total
variability of a variable into externally and internally
generated components, or simply into signal and noise.
Using simulations with many ensemble members, Row-
ell et al. (1995) suggested that the signal could be cal-
culated from the variability between ensemble means
(intraensemble variance), and the noise from the vari-
ability between individual members around the en-
semble mean (interensemble variance). The idea be-
hind this concept is that the ensemble mean is ideally
zero unless it is perturbed by external forcing and that
the spread of individual members around the ensemble
mean is an estimate for the internal variability indepen-
dent of boundary forcing. We followed this approach
and estimated the internal variability by

�int
2 �

1
Y�R � 1� �y�1

Y

�
r�1

R

�xyr � xy�2, �A1�

where xyr is the quantity under consideration for year y
and member r, Y is the total number of years, and R is
the total number of members. The overbar denotes en-
semble averaging. An estimate of the variability of the
ensemble means is given by

�EM
2 �

1
Y � 1 �

y�1

Y

�xy � x�2, �A2�

where the double bar denotes climatological ensemble
mean. Because of the limited number of members that
were used to compute the ensemble mean, the en-
semble mean variance still contained some internal
variability and thus overestimated the SST-forced vari-
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ance. An unbiased estimate of the external variability is
given by

�ext
2 � �EM

2 �
1
R

�int
2 . �A3�

Finally, we take

�total
2 � �ext

2 � �int
2 �A4�

to estimate the total variance of variable x. In the case
of observational data, only one member is available, so
that only the total variance can be calculated from

�2 �
1

Y � 1 �
y�1

Y

�xy � x�2. �A5�
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