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ABSTRACT

This study investigates the climatological frequency distribution of sudden stratospheric warmings (SSWs).

General circulation models (GCMs) tend to produce SSW maxima later in winter than observations, which

has been considered as a model deficiency. However, the observed record is short, calling into question the

representativeness of the observational record. To study the seasonality of SSWs and the factors behind it, the

authors use observations, a long control simulation with a stratosphere resolving GCM, and also a simple

statistical model that is based on the climatological seasonal cycle of the polar vortex winds. From the

combined analysis, the authors conclude that the late-winter SSW maximum seen in most climate models is

realistic and that observations would also have a late-winter SSWmaximum if more data were available. The

authors identify the seasonally varying strengths of the polar vortex and stratospheric wave driving as the two

main factors behind the seasonal SSW distribution. The statistical model also indicates that there exists a

continuum of weak polar vortex states and that SSWs simply form the tail of normally distributed

stratospheric winds.

1. Introduction

It is now widely accepted that conditions in the strato-

sphere matter for the troposphere and that the represen-

tation of the stratosphere in numericalmodels is important

for simulating the atmosphere on a range of time scales.

Of particular importance are sudden stratospheric

warmings (SSWs), which are extreme wintertime circu-

lation anomalies of the NorthernHemisphere that occur

at irregular intervals in about every second year. At the

surface, SSWs tend to be associated with the negative

phase of the North Atlantic Oscillation, a southward-

shifted North Atlantic storm track, and weather ex-

tremes over the North Atlantic sector (Thompson et al.

2002; Kidston et al. 2015). The simulation of SSWs in

models contributes significantly to tropospheric sea-

sonal forecast skill (Sigmond et al. 2013; Domeisen et al.

2015; Jia et al. 2017).

Despite the significance of SSWs for surface

weather and climate, considerable uncertainty re-

mains as to when in winter SSWs are most likely

and what the reasons for their temporal distribu-

tion are. Previous studies (Charlton et al. 2007;

Charlton-Perez et al. 2008; Butchart et al. 2011) note

that in observations SSWs occur mostly during mid-

winter, while several modeling studies have shown

that general circulation models (GCMs) tend to favor

late-winter SSWs. One potential reason for such

model biases could be differences in the number of

simulated split or displacement events, since each

event type has different seasonal cycles (Seviour et al.

2016). However, we believe that it is more important

that SSWs are rare events, leading to a small observed

monthly sample size. In the 67 winters of the NCEP–

NCAR reanalysis (NNR; Kalnay et al. 1996), there

are less than 10 SSWs in each month, creating large

uncertainty in the shape of the seasonal distribution

of SSWs. The first goal of the present study is therefore

to decide how significant the differences in the sea-

sonal timing of SSWs between observations and

models are.

The seasonal distribution of SSWs and how it is

simulated by models leads us also to ask what factors

determine the climatological frequency of the number

of SSWs during any given winter. SSWs rely on the

upward propagation of planetary waves from the

troposphere into the stratosphere and on the absorp-

tion of the waves in the stratosphere (Matsuno 1971).

Previous studies attribute the onset of SSWs to an
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increasing amount of planetary waves (Holton and Mass

1976; Schoeberl and Strobel 1980; Yoden 1987; Polvani

and Waugh 2004; Limpasuvan et al. 2005), leaving the

impression that pulses of planetary waves are important

prerequisites for the creation of SSWs. Jucker (2016),

however, claims that increased wave propagation is not

the primary trigger for SSWs and that during most of

Northern Hemisphere winter there is always enough

upward-directedwave energy for SSWs. Similarly,Albers

and Birner (2014) argue that increased planetary wave

propagation is only responsible for the preconditioning of

the polar vortex to favor SSWs but that the wave con-

vergence is not responsible for the SSW itself. Irre-

spective of the question of exactly which aspect of the

upward-directed planetary wave energy is most impor-

tant for SSWs, the seasonally varying strength of the polar

vortex is another potential factor that must be con-

sidered, as shown by Jucker et al. (2014) in the context

of an idealized climate model. Since a reversal of

the stratospheric winds is an important prerequisite

for SSWs, it is reasonable to assume that to first

order a stronger polar vortex requires more strato-

spheric wave driving to produce a wind reversal and

an SSW.

In the climatological mean, both the stratospheric

wave driving and also the strength of the polar vortex

maximize during January. Hence, going from winter

to spring, the weakening polar vortex strength (cre-

ating more SSWs) and reducing planetary wave

driving (creating fewer SSWs) may have opposing

effects on the seasonal timing of SSWs. This idea

leads to the second goal of this research, namely, to

understand the roles of seasonally varying strato-

spheric wave driving and polar vortex strength for the

creation of SSWs and how the interplay between the

two influences the timing of maximum SSWs in win-

ter. We accomplish our goal by statistically modeling

the daily evolution of SSW probability, using only

information about the seasonally varying statistics of

the zonal mean zonal winds at 10 hPa and 608N
(U1060) and assuming that on any given day U1060 is

normally distributed around its mean. In the statisti-

cal model, the strength of the polar vortex is repre-

sented by the mean of U1060, and the wave driving

and how effective the waves propagate and break in

the polar vortex region are indirectly represented by

the interannual standard deviation of daily U1060.

The idea behind the latter assumption is that the eddy

driving leads to intermittent weakening of the polar

vortex and hence to interannual variability of daily

U1060. Other potential influences on this variability,

like from ENSO or the QBO, are assumed to be small,

cyclic in nature, and irrelevant in the context of

climatological means. We then use the statistical

model to analyze the influence of the individual SSW

definition requirements (Charlton and Polvani 2007,

hereafter CP07) and also the importance of polar

vortex strength and stratospheric wave driving in

determining the seasonality of SSWs. As we will show,

the seasonally decreasing strength of the polar vortex

is the primary factor, and the planetary wave driving

is of secondary importance.

This work is structured as follows. Section 2 de-

scribes our data, methods, and assumptions. Section 3

discusses the statistical model and the results thereof

in terms of the input parameters and the actual oc-

currence of SSWs. We then analyze how sensitive the

statistical model is to changes in input parameters.

Finally, section 4 presents a summary of our findings

and our conclusions.

2. Methodology

Most of our analysis is based on daily output

from a nearly 10 000-yr-long control run conducted

with a stratosphere-resolving version of the Geo-

physical Fluid Dynamics Laboratory’s (GFDL) Climate

Model, version 2.1 (CM2.1) (Staten and Reichler

2014). The original version of the model (Delworth

et al. 2006) has 24 vertical levels, while our version

uses 48 vertical levels, with the additional levels being

mostly concentrated in the stratosphere. Greenhouse

gases, ozone concentrations, and other external forcings

are prescribed to the model at 1990 levels and held

constant through time. The well-resolved stratosphere

is essential for the simulation of a more accurate

stratospheric circulation (Charlton-Perez et al. 2013).

We also use daily data from the 1948–2015 NNR

(referred to as ‘‘observations’’) and from select

models of phase 5 of the Coupled Model Intercompari-

son Project (CMIP5). From each data source, we extract

continuous multiyearlong daily time series of U1060

to create two SSW event distributions: an empirical

distribution, based solely on the actual number of

events that occur in the dataset itself, and a statistical

distribution, based on the statistical model described

below.

The daily climatologies of the mean, interannual

standard deviation, and skewness of U1060 are em-

pirically derived from the investigated dataset. The

values are denoted as m(t), s(t), and g(t), respectively,

where t is the day of the year. All values are smoothed

in time using a Gaussian smoother with a kernel of

three standard deviations. Additionally, we denote

r(t, t) as the climatological lagged autocorrelation of

U1060 for each day t and lag t. One of the basic
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assumptions of this work is that on any given day,

U1060 is approximately normally distributed. In other

words, we assume that the most likely value of U1060

is at its daily mean and the actual values are evenly

distributed around that mean following a Gaussian

distribution. As we will show, this assumption is rea-

sonable for most of our work.

Although some debate exists on how to best define

SSWs (Butler et al. 2015), CP07 provide a widely used

definition for major SSWs, which is similar to what we

use in this work. The CP07 definition is based on a re-

versal of the polar vortex winds (as represented by

U1060), while ignoring minor warmings. In addition,

CP07 define some extra conditions that must be fulfilled

for an SSW, leading us to describe the probabilities for

the following four events:

1) Zero crossings are days when U1060 shifts from

westerly to easterly. Zero crossings can occur on

any day of the year, but empirically do so only during

fall, winter, and spring.

2) Vortex returns are zero crossings that are addition-

ally conditioned on 10 subsequent and consecutive

days of positive values of U1060, which must occur

before 31 May (rather than 30 April as in CP07).

The date of a vortex return is the date of the

preceding zero crossing, and it must occur between

1 November and 31 March.

3) SSWs are isolated vortex returns that are separated

from each other by at least 20 days. Should two

vortex returns occur within 20 days of each other,

then only the first is considered as an SSW.

4) Final warmings are the final zero crossings of the

winter. Each winter has exactly one final warming.

Figure 1 shows examples of the above four events in

terms of an arbitrary segment of a U1060 time series. Of

note is the vortex return shown by the blue circle in

Fig. 1c, which does not qualify as an SSW since it is

preceded by another SSW within less than 20 days (red

circle). Our definition of final warmings differs some-

what from that of Black et al. (2006): for consistency

reasons, we base all our event definitions on U1060,

whereas Black et al. (2006) define final warmings based

on the zonalmean zonal wind at 708Nand 50hPa and the

condition that the wind does not exceed 5ms21 after a

zero crossing.

Zero crossings are rare events that form the basis for

the three other events described above. In Fig. 2 we

present an example of model-derived U1060 distri-

butions on two adjacent January days. During this

time of the year, the relative frequency of easterly

FIG. 1. U1060 event definition. (a) An arbitrary 10-yr-long time series of daily U1060. Color indicates zero

crossings (gray), vortex returns (blue), SSWs (red), and final warmings (green). (b)–(e) Close-ups of events

encircled in (a).
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U1060 is small, and the probability of a directional

shift in the zonal winds, or zero crossing, is even

smaller. In our statistical model, we aim to portray the

probability of such zero crossings P(ZC)n on any given

day n. To this end, we integrate a multivariate normal

distribution in two dimensions following

P(ZC)
n
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(adapted from Wilks 2006), where R is a 2 3 2 lagged

(for days n 2 1 and day n) correlation matrix consisting

of the corresponding r values, z is a vector

�
z1
z2

�
of

normalized U1060 for days n2 1 (z1) and n (z2), k5 2 is

the dimensionality of the problem (i.e., the number of

days considered), and the < symbol represents a union

of multiple events. The 2m/s in terms of normalized z

constitutes zero in the actual U1060. Thus, the inner

integral in (1) represents the probability that U1060 is

FIG. 2. U1060 distribution on 1 and 2 Jan in CM2.1. Shown are outcomes from the 10 000 samples of the empirical

data (black), along with normal (red) and skew-normal (blue) (Azzalini 1985) distributions using parameters

calculated from the empirical data. Bin size is 1m s21. (bottom right) The corresponding two-dimensional distri-

bution, with first contour representing 1 event per 10 000 and additional contours at intervals of 5. The arrow in

(bottom right) highlights what we define as zero crossings.
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positive on day n 2 1, denoted by P(U1
n21). The outer

integral represents the probability of U1060 being neg-

ative on day n, denoted by P(U2
n ). To calculate multi-

variate integrals like (1) we use an efficient numerical

algorithm (Genz et al. 2004), but this algorithm does not

allow incorporating the skewness of the distribution.

This means that our statistical model is only controlled

by the mean, standard deviation, and autocorrelations.

If we were able to take into account the skewness then it

would lead to a more accurate representation of the

negative tail of U1060 (Fig. 2). However, as we will show

below, skewness is small during late winter when most

SSWs occur, and the neglect of skewness does not im-

pact our results in major ways.

Finding the probability of a vortex return P(VR)n on

day n is based on a similar technique, but we additionally

incorporate the requirement of 10 consecutive days of

westerly U1060. This can be written as

P(VR*)
n
5 [P(ZC)

n
<U1

n11 <U1
n12 . . . <U1

n110]

1 [P(ZC)
n
<U2

n11 <U1
n12 . . . <U1

n111] . . .

1 [P(ZC)
n
<U2

21May<U1
22May . . . <U1

31May] .

Mathematically, this union is resolved by multiple nested

integrals similar to (1). However, as defined above,

P(VR*)n also includes the chance that the 10-day criterion
is met multiple times after the first zero crossing. As de-

tailed in the appendix, we correct for this chance to arrive

at the final probability of a vortex return P(VR)n.

We next determine the probability of SSWs, using the

chance of a vortex return on day n and requiring at least

20 days of separation between individual SSW events.

To this end we multiply the chance of a vortex return by

the sum of chances of an SSW in the previous 20 days

under the simplifying assumption that SSWs are in-

dependent events following

P(SSW)
n
5P(VR)

n

"
12 �

i5n21

i5n220

P(SSW)
i

#
.

We use a similar methodology to determine the proba-

bility of final warmings P(FW) and integrate (1) re-

quiring that day n 2 1 has a positive U1060 while day n

and all subsequent days through 31 May have negative

values. This can be written as

P(FW)5P(U1
n21 <U2

n <U2
n11 . . . <U2

31May) .

As the U1060 . 0 requirement for day n 2 1 creates

mutually exclusive events, there is no need to adjust

these results for multiple events.

We employ Eliassen–Palm (EP) flux analysis in

pressure coordinates (Kushner and Polvani 2004) to

diagnose the impact of waves on SSWs. The strato-

spheric wave driving is given by the vertical component

of the EP flux vector at 100 hPa, averaged between 20

and 908N. The negative of this quantity, denoted

by2F2, is similar to the meridional eddy heat flux y*T*

(Polvani and Waugh 2004). We also calculate the EP

flux convergence within a box bounded by 40 and 908N
and 100 and 1hPa to capture the wave activity in the

vicinity of the polar vortex.

3. Results

We first examine the relationship between strato-

spheric wave driving and variability in U1060. Next, we

determine how robust the differences in SSW season-

ality between our long GCM control integration and the

observations are. We then use our statistical model to

replicate the finescale temporal evolution of SSWs seen

in the GCM. By varying some of the statistical model’s

input parameters, we investigate the factors most re-

sponsible for setting the seasonal structure of SSWs.

a. Wave driving and polar vortex variability

Our statistical modeling work is partly based on the

variability of the polar vortex, measured by the in-

terannual standard deviation of daily U1060. The black

curve in Fig. 3a shows the climatological annual cycle of

this quantity. We understand this quantity as a proxy for

the intensity of the eddy driving of the polar vortex by

upward-propagatingRossbywaves from the troposphere.

To investigate this conjecture, we first focus on the

amount of upward-propagating waves at the 100-hPa

level, which is also known as the stratospheric wave

driving. As shown in Fig. 3a, wave driving and U1060

standard deviation have fairly similar annual cycles, but

there are also differences. These differences may be re-

lated to the fact that not all waves entering the strato-

sphere from below get absorbed in the polar vortex

region and contribute to the eddy driving. Some waves

escape into the mesosphere, or get refracted away from

the vortex region into the tropics. Therefore, a better

measure of the eddy driving of the vortex should be the

actual convergence of the EP flux in the polar vortex

region. This convergence is not only a function of the

wave driving from below, but also of the seasonally

varying stratospheric background flow and how it refracts

and breaks the waves. The EP flux convergence in the

vortex region, shown by the blue curve in Fig. 3a, agrees

even better with the U1060 standard deviation than the

stratospheric wave driving. This confirms our earlier as-

sumption that the variability of the polar vortex is closely
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related to the eddy driving and that the two are roughly

proportional to each other. There are some discrepancies

during early winter (November–December). During this

time, the standard deviation of U1060 somewhat under-

estimates the eddy convergence.

We next turn our attention again to the lower-

stratospheric wave driving, as this quantity is also

related to vortex variability and more commonly used

in the literature. We investigate how the wave driving

and the polar vortex are related on shorter, intra-

seasonal time scales. Figure 3b shows the evolution of

both during an arbitrary winter. The chosen winter

contains one SSW and is associated with reduced

(compared to the climatology) wave driving during

January and early February and increased wave

driving thereafter. The two curves are anticorrelated

at a few days lag. This becomes clearer when all years

and all days of the year are included to calculate the

cross correlation between U1060 and wave driving

(Fig. 3c). The anticorrelation maximizes when the

wave driving leads U1060 by about four days. This is

apparently the time for the waves to propagate from

the lower to the middle stratosphere and undergo

wave–mean flow interaction.

The scatterplot in Fig. 3d compares the February-

averaged (days 30–60) wave driving with the daily

U1060 standard deviation during the same period at a

5-day lag. Each dot represents the outcome from one year.

As before for the climatological seasonal cycle (Fig. 3a),

stronger wave driving is associated with increased

U1060 variability. The results are similar when different

periods are selected (e.g., January or March). The

FIG. 3. U1060, wave driving, and EP flux convergence from the CM2.1 model. (a) Seasonal cycle climatology of

EP flux convergence (blue; 105 kgm s24), wave driving (red; 105 kgm s24), and U1060 standard deviation (black;

m s21). EP flux convergence is integrated from 408 to 908N and 100 to 1 hPa; positive values indicate a net con-

vergence of EP wave activity. Wave driving is the vertical component of the EP flux vectors, measured at 100 hPa

and averaged from 208 to 908N; positive values indicate upward propagation. (b) Evolution of wave driving (red)

andU1060 (black) for an arbitrary winter; thick lines show climatological mean. (c) Cross correlation between daily

anomalies in wave driving and U1060; lag is positive if U1060 leads; the underlying data are very large so that

correlations even at the 10% level are highly significant; and positive correlations at positive lags are presumably

due to the oscillatory nature of the two quantities. (d) Scatterplot between yearly values of wave driving, averaged

from day 30 to 60, and daily standard deviation of U1060 between day 35 and 65 of the same year; each dot

represents outcome from one year; outcomes are very similar for other day ranges; and the horizontal red band

indicates climatological seasonal range of wave driving during selected period.
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relatively good relationship between wave driving and

vortex variability has a simple explanation: absence of

substantial wave driving creates a cold and stable vortex

and hence reduced variability; periods of increased wave

driving, however, tend to be associated with bursts of

wave energy (Fig. 3b), leading to strong perturbations of

U1060. In summary, the analysis of Fig. 3 demonstrates a

fairly good relationship between lower-stratospheric

wave driving, eddy driving of the polar vortex, and in-

terannual variability of daily U1060.

b. SSW seasonality

In evaluating the month-to-month SSW distribution,

we note that the reanalysis period is relatively short,

resulting in a very modest number of events (10 or

fewer) during individual months. This introduces large

uncertainty in the seasonal distribution of SSWs, which

in the following we attempt to quantify. We begin by

comparing the month-to-month distribution of SSWs

seen in the observations and the GCM by focusing

on the same n 5 45 winter-long period (1960–2005)

(Fig. 4a) as in Charlton-Perez et al. (2008). As indicated

by the gray bars, January has the most number of ob-

served SSWs. In contrast, the GCM (red symbols) has

most SSWs in February, a situation representative for

many other climate models. However, when consider-

ing the longer n 5 67 winter period (1948–2015)

(Fig. 4b), the observations also exhibit a February SSW

maximum, just like the GCM. This nicely demonstrates

the sensitivity of the observed distribution to the period

of the underlying data. To better quantify the corre-

sponding uncertainty, we use bootstrapping (without

replacement) of the GCM data to generate a large

number (10 000) of synthetic seasonal SSW distribu-

tions, each based on the same number of winters (n) as

the observations but using randomly selected winters

[November–March (NDJFM)] from the long GCM

run. The outcome from the bootstrapping in terms of

mean, extreme values and 95% confidence interval is

shown by the red symbols in Figs. 4a and 4b. The

monthly number of SSWs seen in the observations is in

each case within the 95% confidence interval of the

GCM produced SSWs, indicating that one cannot re-

ject the null hypothesis that GCM and observed SSWs

stem from the same distribution. In other words, the

two distributions cannot be distinguished from each

other, unless the error rate is increased above 5%. We

note, however, that the difference between GCM and

observations during January cannot be fully ignored

either; the observed number of SSWs is at the upper

end of the GCM generated 95% limit, hinting at the

small chance of a certain inconsistency between the

two datasets.

We further investigate the SSW seasonality and re-

duce our bin size from the monthly time period to a

running 11-day average (Fig. 4c). Interestingly, now

there is a relatively good visual agreement between

the two distributions, with a maximum at the end of

February in both datasets. This suggests that the January

maximum seen in the NNR (Fig. 4a) is partially related

to the fixed dates of each month in combination with

large SSW variability within each month. It should

also be noted that January contains more days than

February, leading to more January SSWs for artificial

reasons. The difference between the two datasets stems

from both the GCM showing fewer SSWs in December

and January and the observations having a relative

minimum in early February.

Getting back to our question about the relative im-

portance of decreasing polar vortex strength and de-

creasing stratospheric wave driving in controlling the

seasonality of SSWs, we note that the late-February SSW

maximum in the model is long after the early-January

maximum in vortex strength and wave driving. It suggests

FIG. 4. SSW seasonality. Shown is the SSW frequency (events per period in %) from reanalysis (gray or black) and the CM2.1 GCM

(red). (a),(b) Red symbols indicate mean, minimum, maximum and 95% confidence interval, derived from bootstrapping. (c) SSW dis-

tribution based on an 11-day-long sliding interval.
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that the decreasing polar vortex strength is the dom-

inant factor for the occurrence of SSWs. This late-

February SSWmaximummay be during the time when

the climatological vortex is weak enough to allow

for a large number of zero crossings but also during

the time when the vortex is still strong enough to

create a decent chance for a vortex return, thus gen-

erating an SSW. Better understanding this idea moti-

vated us to construct our statistical model, which

determines the daily climatological probability of

SSWs using only the statistical properties of the polar

vortex strength.

c. Input parameters to the statistical model

We now discuss the temporal evolution of the mo-

ments and correlations of U1060 (Fig. 5), which were

empirically derived from GCM and observations.

These values drive our statistical model, and we refer

to them simply as input parameters. The data from the

reanalysis (black) and the GCM (red) are similar. The

mean U1060 (Fig. 5a) maximizes at the beginning of

January and reaches zero at about mid-April. The

U1060 standard deviation (Fig. 5b) maximizes at the

end of January and then tends to decrease to small

values in summer. The autocorrelation of U1060 is

shown exemplarily for two different dates and various

lags (Figs. 5c and 5d). Autocorrelation is important

because it directly enters our statistical model through

(1), and physically it can be interpreted as the stiffness

or persistence of the polar vortex. In other words,

higher autocorrelation means it is increasingly difficult

to disturb the vortex. There are some minor differ-

ences between autocorrelation of GCM and observa-

tions at lags of 10–20 days, and both datasets show an

interesting weak anticorrelation at lags of 60–75 days.

This anticorrelation reflects the low-frequency vari-

ability of the stratospheric circulation (Christiansen

2000), which includes warm (SSW like) and also cold

vortex states. For example, we find a systematic delay

of the final warming date in winters with a prior SSW.

The temporal evolution of the persistence of U1060 is

indicated by the lag-1 autocorrelation (Fig. 5e). This

quantity is key for our calculation of zero crossings,

and it increases more or less monotonically from win-

ter to spring. We note that the temporal evolution of

correlations at higher lags (not shown) is similar to that

of lag 1.

Although not included in our statistical model, the

skewness of the U1060 distribution (Fig. 5f) provides

insight into potential errors caused by our assumption of

unskewed normality. The skewness in the GCM is gen-

erally negative, implying that the U1060 distributions

have a long negative tail and that our assumption of a

standard normal distribution underestimates the num-

ber of negative U1060 values. However, during late

winter and early spring, the skewness is only moderately

FIG. 5. U1060 input parameters. Tick lines are smoothed (using a Gaussian with a kernel of three standard

deviations) and represent the actual input data for the statistical model.
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negative, and this is the time when most of the

SSWs occur.

d. Zero crossings

Zero crossings of U1060 are the most basic of the four

events described above. The distributions of the em-

pirically derived zero crossings (black) from GCM and

reanalysis are very similar (Figs. 6a and 6b), with low

probabilities in early winter, a gradual increase starting

after the polar vortex strength has reached its maximum

strength, and a steep decrease in May. Zero crossings

maximize in mid-April, the time when the mean wind

changes from westerlies to easterlies and the probability

of positive or negative U1060 is near equal. InMay, zero

crossings rapidly decrease, due primarily to the large

persistence of U1060 at this time.

Our statistical model calculates zero crossings by

integrating a bivariate normal distribution, giving the

probability that U1060 on day n 2 1 is positive and on

day n it is negative. The model (red) replicates the

above-described empirically derived results well, in-

cluding the more modest increase of NNR probabilities

between January and March as compared to the GCM.

There are also someminor but systematic flaws: for both

FIG. 6. Seasonal evolution of event probabilities (% day21). Shown are empirical data (black), those based on the

statistical model (red; nonskewness assumption), and those from the statistical model using a bivariate skew-normal

distribution (green). The empirical NNR results (black lines) are smoothed using a Gaussian smoother with a kernel

of three standard deviations.
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datasets, the statistical approach underpredicts zero

crossing in early to midwinter, while there is a slight

overestimate in April.

The underestimate is only marginally related to not

incorporating skewness in our statistical model. This is

demonstrated by the green curve in Fig. 6a, which was

derived from calculations that consider skewness using a

bivariate skew-normal distribution (Azzalini and Dalla

Valle 1996) and which only led to minor improvements.

A better explanation for the underestimate during early

to midwinter comes from Fig. 3a. There, it is shown that

during November andDecember the standard deviation

of U1060, which is an important input parameter to our

model, does not describe very well the amount of lower-

stratospheric wave driving and wave convergence in the

polar vortex region. Hence, U1060 somewhat un-

derestimates the true variability of the polar vortex

during this time of the year.

The overestimate of the red curve at the April maxi-

mum, though small, could potentially be due to the fact

that the correlation is calculated from many years and

that it is therefore influenced by a combination of

two different atmospheric states: one in which the

polar vortex still exists (leading to lower correlations)

and one in which the polar vortex is already broken

down (leading to higher correlations). Nonlinearities in

calculating correlations, which become more impor-

tant as correlation approaches unity, may lead to the

seen discrepancies.

e. Vortex returns

The black curves in Figs. 6c and 6d show the proba-

bility of empirically derived vortex returns, which are

zero crossings with the additional constraint that U1060

becomes positive for 10 consecutive days anytime af-

terward. From November through mid-February, the

number of zero crossings and vortex returns is almost

identical. This is because the stratosphere strongly fa-

vors westerlies at that time, and 10 consecutive days of

westerlies are almost guaranteed to happen. In mid-

February, however, this is no longer true, and the

probability of vortex returns increases more gradually

than that of zero crossings. The vortex return probability

maximizes in late February, as the requirement for 10

consecutive days of positive U1060 is increasingly more

difficult to fulfill and begins to outweigh the still in-

creasing chance of a zero crossing. The drop on 1April is

caused by the somewhat arbitrary definition (CP07).

Our statistical model of vortex returns is based on a

multivariate normal distribution, which conditions the

likelihood of a zero crossing on a subsequent 10-day-

long period of westerlies (see methods). The statisti-

cal model mirrors the empirical probabilities of zero

crossings in early winter well, decreasing in slope once

the probability of 10 consecutive positive days becomes

less than one and reaching a maximum while the prob-

ability of a zero crossing is still increasing. For NNR, the

statistical model also finds larger probabilities for a

vortex return than for the GCM, which agrees well with

the empirical results. Thus, subtle differences in the in-

put parameters for our model are important and lead to

meaningful differences between the two datasets.

f. SSWs

An SSW is a vortex return separated from a previous

SSW by at least 20 days. The outcome of the statistical

modeling of the evolution of SSW probabilities is pre-

sented in Figs. 6e and 6f. The empirical outcomes for the

observations (Fig. 6f) are similar to that shown in Fig. 4c,

except for the differences in the smoothing. Empirically

(black curves), early in winter there is little difference

between SSWs and vortex returns. A zero crossing (and

therefore vortex return and SSW) is a rare enough event

in November and December that the likelihood of two

occurring during the same period is very small. By late

January in the observations, and early February in the

GCM, the 20 days of separation requirement reduces

the slope of the SSW probability curve. This reduces the

;1.2%day21 maximum in vortex returns at the end of

February (Fig. 6c) to;0.8% per day for SSWs (Fig. 6e).

In our statistical model, we calculate SSW probabili-

ties by multiplying the probability of a vortex return on

any given day by the chance that there were no SSWs in

the 20 days prior. The red curves in Figs. 6e and 6f show

the outcomes. The curves for the observations and the

model are similar and bothmaximize at the beginning of

March. This reinforces our earlier finding that the ob-

served January maximum in terms of absolute SSW

counts (Fig. 4a) must be interpreted with care owing to

the small sample size. It suggests that, with more ob-

servations, the date of maximum SSWs would be shifted

toward late winter as in the GCM. In terms of the

annual SSW frequency, the statistical model produces

0.59 SSWyr21 for the GCM and 0.70 SSWyr21 for the

NNR. This compares quite favorably against the em-

pirically derived annual frequencies of 0.61 and 0.64 for

GCM and NNR, respectively. For GCM and NNR, the

maximum daily probability is ;1% and occurs about

10 days after the empirical maximum, and the small

underestimate in early winter is balanced by a similar

small overestimate in late winter.

We also tested the sensitivity of empirical and statis-

tical SSW frequencies to varying the number of days of

separation (not shown). As expected, increasing the

number of days of separation (NDSEP) makes the oc-

currence of multiple SSWs in the same winter less likely,
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reducing the number of late-winter SSWs (in particular

March SSWs), reducing the number of overall SSWs,

and increasing the relative frequency of midwinter

SSWs. For example, increasing NDSEP from 20 to

40 days reduces the daily SSW frequency at the begin-

ning of March from 0.93% to 0.85%.

g. Final warmings

Final warmings (Figs. 6g and 6h) are the last zero

crossing of U1060 in winter. The area under the empir-

ical (black) and statistical (red) final warming curves are

by definition unity, as there is exactly one final zero

crossing in every winter. In GCM and NNR, empirical

final warmings appear at the beginning of March and

maximize in early to mid-April, when mean U1060

crosses zero. Also, final warmings decrease sharply in

May, when the probability of westerlies in U1060 be-

comes near zero.

In March, the near-correct estimate of zero crossings

(Fig. 6a) and the overestimate of vortex returns (Fig. 6c)

and SSWs (Fig. 6e) implies that the statistical model

overestimates the chance of positive U1060 after a zero

crossing. Thus, we expect our statistical model to pro-

duce final warmings later in the year than the empirical

data. With the GCM input parameters, our statistical

model produces a curve similar to the empirical data, but

as expected, shifted late by approximately three days.

This shift is maintained through May because final

warmings that do not occur earlier in the year must

occur later.

h. Application to other models

To test whether the success of our statistical model

still holds when applied to other datasets, we next use

input parameters from select CMIP5 models. The par-

ticular models we choose (MIROC5, IPSL-CM5A, and

IPSL-CM5B) are extreme outliers in terms of their SSW

seasonality and annual frequency (Fig. 7) and therefore

provide a good test case for our statistical model. The

question is, is the unusual SSW distribution in these

models reflected in changes to the input parameters for

our statistical model, and can the statistical model

therefore replicate the empirical results?

The SSW distribution of MIROC5 (Watanabe et al.

2010), a model that we choose because of its lack of

empirical SSWs, is well reproduced by our statistical

model. It produces no SSWs throughout the vast ma-

jority of winter, with a very small chance in late March.

Also of note, zero crossings are narrowly clustered

around mid-April, which is again well represented by

our statistical model. From a brief analysis of input pa-

rameters it is clear that the mean and correlations of

MIROC5 are similar to that of NNR and CM2.1 but that

the standard deviation is much too small. Thus, in this

FIG. 7. Additional model results. The models are MIROC5 (historical run 2; 1850–2012), IPSL-CM5A (medium resolution; RCP4.5;

2006–2300), and IPSL-CM5B (low resolution; RCP8.5; 2006–2100). (left) Input parameters show the mean of U1060 plus or minus one

standard deviation (black), the lag-1 correlation (blue), and the skewness (green).
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case the lack of variability in polar vortex strength di-

rectly relates to the lack of SSWs.

The opposite is true in IPSL-CM5A (Dufresne et al.

2013), which we choose because of its overall large

number of SSWs compared to most other CMIP5

models. Our statistical model again represents the em-

pirical number and seasonal distribution of SSWs and

zero crossings well.

Finally, we examine IPSL-CM5B (Dufresne et al.

2013), which has a rare empirical January SSW maxi-

mum, as opposed to the usual February maximum in

most other models. Again, the zero crossing calculations

fit well, but the statistical model underestimates the

actual number of SSWs in January. During that month,

the large number of SSWsmay be explained by the large

U1060 standard deviation, as the mean U1060 of this

model is higher than in any other dataset. Sampling

uncertainty may also play a role, as this dataset contains

only 95 years. Overall, the analysis of the three addi-

tional models suggests that the evolution of the U1060

standard deviation and thus of the strength of the

stratospheric wave driving is also a strong predictor for

the occurrence of SSWs.

i. Sensitivity analyses

The skewness in U1060 in early winter (Fig. 5f)

indicates a limitation of our assumption of an unskewed

normal distribution. This assumption results in an un-

derestimate of events with U1060 , 0 compared to the

negatively skewed empirical distribution. Although the

numerical algorithm we use to calculate integrals of

multivariate normal distributions (Genz et al. 2004)

does not incorporate skewness, we attempt to account

for this underestimate by simply shifting themean of our

daily unskewed normal distributions toward smaller

U1060. By doing so, we accurately represent the percent

of values of U1060 below zero for any given day in our

empirical dataset. We then use the same correlation and

standard deviation as before for our input parameters to

refine our calculation of SSW probability. The new cal-

culations (not shown) yield results that align very well

with the distribution of SSWs in the GCM until late

February, but the overestimate during March (Fig. 6e)

still remains. This suggests that the neglect of skewness

is an important cause for the issues in early winter. For

the persistent overestimate in March, however, other

reasons must be sought. We suspect that different au-

tocorrelations between the winter and summer regimes

of the polar vortex and that the input parameters being

calculated from a combination of both are responsible.

In an attempt to better understand the interplay be-

tween polar vortex strength and stratospheric wave

driving and its role in setting the timing of SSWs, we next

ask how sensitive the statistical model is to variations in

the prescribed seasonal changes in mean, standard de-

viation, and autocorrelation of U1060. The temporal

evolution of U1060 is important because zero crossings

and thus SSWs are more likely when the mean increases

over time than when it decreases. Along with a higher

mean (Fig. 5a) and lower standard deviation (Fig. 5b), this

explains why November and December have far fewer

zero crossings and SSWs than February and March.

To investigate the influence of standard deviation and

hence wave driving alone, we rerun our statistical model

using the original GCM-derived input parameters

for mean and correlation but use constant standard

deviations ranging from4 to 20ms21 (Fig. 8a).As expected,

the probability of SSWs decreases with decreasing standard

deviation. For example, a constant standard deviation of

4ms21 results in SSWs that exclusively occur in March, a

situation similar to that of theMIROC5model (Fig. 7). An

increasing standard deviation not only increases the SSW

probability during all days, but it also shifts the late winter

maximum to earlier dates. Of note is that the minimum

probability of SSWs is always at the January maximum of

mean U1060.

FIG. 8. Sensitivity analysis for CM2.1. Shown are the original results from our statistical model (black), and (left)

the result when standard deviation is set to a constant (red; in m s21) throughout the year. (right) Results from using

constant lagged correlations when all lagged correlations are set to their mean using all days of the year (blue) and

correlation is approximated by a least squares fit considering only days 0–1 (lag 1), days 0–2 (lag 2), and days 0–10

(lag 10) (red). Lag 1 overestimates and lag 10 underestimates the actual autocorrelations.
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We next explore the impact of variations in the au-

tocorrelation of U1060. To this end, we modify our

original correlationmatrix r(t, t) to become the same for

all dates t and therefore simply r(t). Using the annual

mean correlation at each lag (Fig. 8b, blue curve) has

very little impact on the outcome. We then make an

exponential least squares fit of r(t) to the previously

determined mean lagged correlations. Because we sus-

pect that the outcomes from our statistical model are

dominated by the large correlations at short lags, we

investigate an increasing number of lags (lag 1, lag 2,

lag 10) in fitting the annualmean autocorrelation function,

with each fit starting at lag 0. The overall shapes of all

three correlation-modifiedmodel outcomes (Fig. 8b, red

curves) are similar and maximize SSWs on the same day

as our original model. The lag-10 fit underestimates the

actual autocorrelation at short lags, leading our statis-

tical model to overestimate the number of zero crossings

and the overall probability of SSWs. Lag 1 leads to the

opposite. Using lag 2most closely resembles our original

statistical model, confirming our original assumption

that our model is most sensitive to autocorrelation at

short lags. Thus, autocorrelation only impacts the mag-

nitude of SSW probability and the annual frequency of

SSWs, but it does not impact the seasonal distribution.

4. Conclusions

The seasonal distribution of SSWs is investigated,

motivated by the fact that observations have an earlier

date (January) in the maximum number of SSWs than

most climate models (February–March). We argue that

SSWs in the observations are undersampled and that the

observed seasonal distribution of SSWs is statistically

nonrobust. We resample a long climate model simula-

tion many times to mimic the observations and find that

the modeled and observed SSW distributions are sta-

tistically indistinguishable. There is also evidence for an

end-of-February SSW maximum in the observations,

just like in the model, when the number of days over

which averages are taken are less than a month. We thus

conclude that the best theoretical estimate for the time

of the maximum number of SSWs is at the end of

February.We expect that in the future, when the observed

SSW sample becomes sufficiently large, SSWs will occur

more often in late winter than in midwinter, causing a

shift in the seasonal SSW distribution in observations.

This also suggests that the observed seasonal cycle of

SSWs cannot be used to constrain models and their

stratospheric circulation performance.

This work also tries to shed light on the factors that

control the seasonality of SSWs. We hypothesize that

between January and March the seasonality is largely

determined by the interplay between the decreasing

strength of the polar vortex, favoring SSWs in late

winter or early spring, and the decreasing strength of the

eddy driving of the vortex, favoring more midwinter

SSWs. To investigate this idea, we construct a simple

model that is based on input from the climatological

statistics of the stratospheric polar vortex winds and the

assumption that the winds follow a multivariate normal

distribution. The climatological input parameters are

the 1) strength, 2) variability, and 3) autocorrelation of

the zonal mean zonal wind at 10 hPa and 608N (U1060).

The statistical model applies the well-known ‘‘WMO’’

criterion to these inputs to calculate the daily varying

probability of SSWs and SSW-related events (zero

crossings, vortex returns, and final warmings). Some

information about actual SSWs is indirectly contained in

our statistical model, as we derive the input climatol-

ogies from all years, including years with SSWs.

Overall, the statistical model closely reproduces the

actual data of our long climatemodel simulation (Fig. 9).

Most importantly, just like the actual climate model

data, the statistical model points to a late-winter SSW

maximum. Driving the same statistical model with ob-

servations also leads to a late-winter maximum, con-

firming that the observed midwinter SSW maximum is

mainly due to the small number of observed SSWs

and the resulting sampling uncertainty. The success of

the statistical model also verifies our hypothesis that

the seasonality of SSWs can be largely explained from the

seasonal variations of the polar vortex strength and

stratospheric wave driving.

FIG. 9. CM2.1 event statistics.
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Our analysis of the statistical model and its sensitivity

to variations in input parameters leads to the following

conclusions:

1) The seasonally varying strength of the polar vortex is

most important for the seasonality of SSWs. It de-

termines how much energy is required to produce a

wind zero crossing. A weak vortex is more likely to

lead to an SSW than a strong vortex; hence SSWs

favor late winter. However, toward early spring, when

the vortex becomes very weak, it is increasingly

difficult to fulfill the 10-day rule for a vortex return,

which then again decreases the probability for SSWs.

The temporal evolution of the vortex strength is

also important: it is positive during November and

December, decreasing theprobability of a zero crossing.

Our results agree well with Jucker et al. (2014), who

show that the overall frequency of SSWs in amodel is

highly anticorrelated with the climatological strength

of the polar vortex.

2) The seasonally varying effects of breaking waves,

indirectly included in our statistical model by the

U1060 standard deviation, represents the available

energy to perturb the vortex. The U1060 standard

deviation is a good proxy for the net convergence of

eddy activity, which includes effects from seasonal

variations in the wave driving at the lower stratosphere

and from the refraction of thewaves by the background

flow. Empirically, eddy activity maximizes during

January (Fig. 3a), a time during which the vortex is

still too strong to producemany SSWs.Heading toward

spring, the eddy activity decreases, but at a rate slower

than the decreasing strength of the polar vortex.

3) The late-winter conditions are optimal for SSWs.

Then, there is still ample supply of wave energy, but

the energy needed for a vortex breakdown is rela-

tively small due to the rapidly decreasing strength of

the winds.

4) From the fact that SSWs reach their maximum

frequency at the end of February, which is long after

the January maximum in planetary wave activity, it

appears that wave driving is less important for SSWs

than the vortex strength. This provides some evi-

dence for the ideas of Jucker (2016) that strato-

spheric wave driving is not a major limiting factor for

SSWs and that SSWs are not necessarily related to

bursts of upward wave fluxes from the troposphere.

5) The autocorrelation of the stratospheric winds can be

interpreted as the ‘‘stiffness’’ of the polar vortex and

thus also determines the amount of energy needed

for a vortex breakdown. The seasonal variations of

autocorrelation are generally small and so is their

influence on SSWs. Autocorrelation has little impact

on the shape of the SSW distribution and the date of

the SSWmaximum; it only affects the overall annual

frequency of SSWs.

Based on these findings, it now becomes clearer why

early November experiences so few SSWs, despite a

vortex that is similar in strength to that at the end of

February, the time of maximum SSWs (Fig. 5a). One

plausible explanation is differences in wave energy

available for a vortex breakdown. From Fig. 3, the

lower-stratospheric wave energy is 20% larger at the end

of February (24.53 105 kgms24) than at the beginning

of November (23.7 3 105 kgm s24). The remaining

differences must be related to seasonal changes in the

refractive properties of the background flow, leading to

40% more eddy convergence in February (3.5 kgms24)

than in November (2.5 kgm s24). This and nonlinearities

in the dynamics then lead to the almost 300% differ-

ences in the standard deviation of U1060 (Fig. 3) be-

tween the end of February (s ; 14ms21) and the

beginning of November (s ; 5ms21). The gradual

strengthening of the polar vortex during November and

December is another contributing factor, as it further

reduces the likelihood for zero crossings. Variations in

autocorrelations play only a minor role.

SSWs are rare and extreme circulation events, origi-

nating from nonlinear wave–mean flow interaction.

Based on these complicated dynamics, it is surprising

how well our statistical model, with its simple assump-

tion of unskewed normality, reproduces the features

seen in the actual data. It indicates that there is nothing

too special about SSWs and that they simply form the

tail of a rather continuous distribution of varying polar

vortex strengths. This is similar to the ideas of Coughlin

and Gray (2009), who find a certain degree of SSW

continuity as long as the polar vortex is within its warm

state. However, the same authors also hypothesize that

the polar stratosphere can be described by two well-

separated states, contradicting to some extent our find-

ings. Our idea of continuity is also somewhat at odds

with the widely used definition for SSWs (CP07), which

is based on the zero crossing of the zonal mean zonal

wind. From a dynamical perspective, the zero-wind line

is highly significant as it forms the critical level for

upward-propagating planetary waves (Charney and

Drazin 1961) and presumably marks the level for further

wave breaking below. However, our results indicate

that, from a statistical perspective, the zero-wind

threshold is arbitrary and that several different thresh-

olds could be used to define extreme, SSW-like events.
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APPENDIX

Vortex Return Calculations

Our vortex return calculations are based on a series of

nested integrals. The equation integrated is the multi-

variate normal distribution [(1)]; however, the di-

mensionality of the problem changes depending on the

start date of positive U1060. To represent days of posi-

tive (negative) U1060, the lower limit of integration in

(1) is chosen to be 2mk/sk(2‘), where k is the day of

interest, while the upper limit is ‘(2mk/sk). A vortex

return on day n requires 10 consecutive days of positive

U1060 on any day after a zero crossing. We begin by

calculating P(VR*), the chance of having 10 consecutive

days of positive U1060 on any day after the initial zero

crossing (day n), up to 22 May. We use 22 May as end

date as 10 days of positive U1060 starting on that date

would end on 31 May.

The calculation ofP(VR*) changes slightly depending

on how many days after day n the period of 10 consec-

utive days of positive U1060 begins. To represent

the zero-crossing returning on day n 1 1, we use a

12-dimensional integral, requiring that U1060 is positive

on day n2 1, negative on day n, and positive on days n1 1

through n 1 10. For the 10 consecutive days of positive

U1060 from day n 1 2 to n 1 11, we must also consider

that day n1 1 has a negative U1060. Therefore, we use a

13-dimensional integral with a positive U1060 on day

n2 1. We use a similar technique for the 10 consecutive

days of positive U1060 starting at later days (n 1 3 . . .),

while maintaining the day before the 10 positive values

as negative and ignoring the days in between.

Beginning with day n1 12, we must consider P(VR#),

the probability that there have already been prior 10

consecutive days of positive U1060. We begin with the

same 13-dimensional integral as before to determine the

probability for this to happen between days n 1 2 and

n 1 11. We then subtract a 22-dimensional integral,

which calculates the probability that day n 2 1 had a

positive U1060, day n a negative U1060, day n 1 1

through n 1 10 a negative U1060, the day before these

10 consecutive days had a negative U1060, and the

10 days of interest again showed a positive value.

Starting on day n1 13 (the 23 dimensional integrals are

unnecessary on day n 1 12) through 22 May, we also

subtract as many 23 dimensional integrals as necessary,

implying that the first 10 consecutive days of positive

U1060 happened after day n 1 1 but before the day of

interest. Using the notation described in the methodol-

ogy section, the chance that there are multiple 10-day

periods with positive U1060 after a day of negative

U1060 before day n 1 31 can be written as

P(VR#)
n131

5 [P(ZC)
n
<U1

n11 <U1
n12 . . . <U1

n110 <U2
n130 <U1

n131 . . .<U1
n140]

1 [P(ZC)
n
<U2

n11 <U1
n12 . . .<U1

n111 <U2
n130 <U1

n131 . . .<U1
n140] . . .

1 [P(ZC)
n
<U2

n119 <U1
n120 . . . <U1

n129 <U2
n130 <U1

n131 . . .<U1
n140] .

We then find the overall probability of a vortex return

P(VR)n by removing the sum of these probabilities from

P(VR*), following

P(VR)
n
5P(VR*)

n
2P(VR#)

n112
2P(VR#)

n113
. . .

2 P(VR#)
22May

.
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